IJE TRANSACTIONS B: Applications Vol. 27, No. 8 (August 2014) 1307-1316   

downloaded Downloaded: 236   viewed Viewed: 2179

M. Parsapour
( Received: January 19, 2014 – Accepted: March 06, 2014 )

Abstract    Thin-walled energy absorbers are used to reduce accident induced damages. In this study, thin-walled stainless steel structures in quasi-hemisphere geometry were subjected under quasi-static loading with Santam 150KN apparatus. Experimental results were compared with results of numerical simulations by LS-DYNA and it was shown that there is a good agreement between experimental and numerical results. Also, the multi-cell quasi-hemisphere specimens were numerically investigated and it was presented that increasing the number of cells increases the absorbed energy. The results showed that Six-cell specimen with the largest diameter and the minimum thickness has the most increase of Specific Absorbed Energy (SAE).


Keywords    Thin-walled structure, energy absorber, quasi-hemisphere, multi-cell


چکیده    از سازه های جدارنازک به منظور کاهش صدمات ناشی از تصادفات استفاده می شود. در این بررسی، سازه هایی از جنس فولاد ضد زنگ به شکل شبه نیمکره تحت بار شبه استاتیکی توسط دستگاه سنتام قرار گرفتند. نتایچ تجربی با نتایج حاصل از شبیه سازی عددی مقایسه شدند و نشان داده شد که تطابق خوبی بین آن ها وجود دارد. همچنین نمونه های چندسلولی شبه نیمکره مورد بررسی عددی قرار گرفت و نشان داده شد که افزایش سلول ها سبب افزایش انرژی جذب شده می گردد. نتایج نشان داد که نمونه شش سلولی با بیشترین قطر و کمترین ضخامت دارای بیشترین مقدار انرژی جذب شده مخصوص می باشد.



1.     Alexander, J., "An approximate analysis of the collapse of thin cylindrical shells under axial loading", The Quarterly Journal of Mechanics and Applied Mathematics,  Vol. 13, No. 1, (1960), 10-15.

2.     Wierzbicki, T. and Abramowicz, W., "On the crushing mechanics of thin-walled structures", Journal of Applied mechanics,  Vol. 50, No. 4a, (1983), 727-734.

3.     Abramowicz, W. and Wierzbicki, T., "Axial crushing of multi-corner sheet metal columns", Applied Mechanics-Transactions ASME,  Vol. 56, No., (1989), 113-120.

4.     Abramowicz, W. and Jones, N., "Dynamic axial crushing of square tubes", International Journal of Impact Engineering,  Vol. 2, No. 2, (1984), 179-208.

5.     Abramowicz, W. and Jones, N., "Dynamic progressive buckling of circular and square tubes", International Journal of Impact Engineering,  Vol. 4, No. 4, (1986), 243-270.

6.     Andrews, K., England, G. and Ghani, E., "Classification of the axial collapse of cylindrical tubes under quasi-static loading", International Journal of Mechanical Sciences,  Vol. 25, No. 9, (1983), 687-696.

7.     Langseth, M. and Hopperstad, O., "Static and dynamic axial crushing of square thin-walled aluminium extrusions", International Journal of Impact Engineering,  Vol. 18, No. 7, (1996), 949-968.

8.     Chen, W. and Wierzbicki, T., "Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption", Thin-Walled Structures,  Vol. 39, No. 4, (2001), 287-306.

9.     Kim, H.-S., "New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency", Thin-Walled Structures,  Vol. 40, No. 4, (2002), 311-327.

10.   Zhang, X., Cheng, G. and Zhang, H., "Theoretical prediction and numerical simulation of multi-cell square thin-walled structures", Thin-Walled Structures,  Vol. 44, No. 11, (2006), 1185-1191.

11.   Alavi Nia, A. and Parsapour, M., "An investigation on the energy absorption characteristics of multi-cell square tubes", Thin-Walled Structures,  Vol. 68, (2013), 26-34.

12.   Alavi Nia, A. and Parsapour, M., "Comparative analysis of energy absorption capacity of simple and multi-cell thin-walled tubes with triangular, square, hexagonal and octagonal sections", Thin-Walled Structures,  Vol. 74, (2014), 155-165.

13.   Tang, Z., Liu, S. and Zhang, Z., "Analysis of energy absorption characteristics of cylindrical multi-cell columns", Thin-Walled Structures,  Vol. 62, (2013), 75-84.

14.   Shariati, M. and Allahbakhsh, H., "Numerical and experimental investigations on the buckling of steel semi-spherical shells under various loadings", Thin-Walled Structures,  Vol. 48, No. 8, (2010), 620-628.

15.   Gupta, N., Mohamed Sheriff, N. and Velmurugan, R., "Experimental and theoretical studies on buckling of thin spherical shells under axial loads", International Journal of Mechanical Sciences,  Vol. 50, No. 3, (2008), 422-432.

16.   Standard, A., "E8," standard test methods for tension testing of metallic materials", Annual book of ASTM standards,  Vol. 3, (2004), 57-72.

17.   Hughes, T., "Nonlinear dynamic finite element analysis of shells, nonlinear finite element analysis in structural mechanics", In: Proceedings of the Europe- U.S. workshop, Ruhr-University Bochum, Germany,  (1981), 151-168.

18.   Hughes, T.J., "The finite element method: Linear static and dynamic finite element analysis, Courier Dover Publications,  (2012).

19.   Belytschko, T., Liu, W.K. and Moran, B., "Nonlinear finite elements for continua and structures. ", Chichester, New York, John Wiley,  Vol. 16, No. 650. (2000)

20.   Hallquist, J., "Ls-dyna theoretical manual", Livermore Software Technology Corporation,  . (1998)

21.   LS-DYNA keyword userís, L., "Manual, version 970", Livermore Software Technology Corporation, (2003).

22.   Zhang, X. and Zhang, H., "Numerical and theoretical studies on energy absorption of three-panel angle elements", International Journal of Impact Engineering,  Vol. 46, (2012), 23-40.

23.   Najafi, A. and Rais-Rohani, M., "Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes", Thin-Walled Structures,  Vol. 49, No. 1, (2011), 1-12.  

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir