Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1339-1348    Article Under Proof

downloaded Downloaded: 350   viewed Viewed: 2383

  IMAGE DENOISING USING ANISOTROPIC DIFFUSION EQUATIONS ON REFLECTION AND ILLUMINATION COMPONENTS OF IMAGE
 
M. H. Khosravi and H. Hassanpour
 
( Received: January 06, 2014 – Accepted: May 22, 2014 )
 
 

Abstract    This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its special user-defined parameters .This hybridscheme donates a flexibility and customizability to the method, due to its ability to separately enhanceeach component properly. In order to evaluate the proposed method effectiveness, a number ofexperiments have been performed and the results have been compared with the results of other pioneeringmethods. The good results indicate superiority of proposed method.

 

Keywords    Image denoising, Image smoothing, Anisotropic diffusion, Homomorphic filtering, Hybrid image enhancement

 

چکیده    در این مقاله، یک روش ترکیبی جدید مبتنی بر فیلتر همومورفیک و معادلات انتشار حرارت نامتقارن برای حذف نویز تصویر پیشنهاد شده است. در روش پیشنهادی با استفاده از فیلتر همومورفیک، تصویر نویزی به دو مولفۀ روشنایی و انعکاس تفکیک می­شود. سپس هر یک از این دو مؤلفه، بطور جداگانه و با پارامترهای خاص آن مولفه، که توسط کاربر تعریف شده‌اند، تحت تأثیر توابع نامتقارن انتشار حرارت قرار گرفته، نویززدایی می­شوند. این روش ترکیبی، بدلیل توانایی آن در بهسازی بهینۀ هر یک از مؤلفه­ها بصورت تفکیک شده، و امکان تأکید بر اهمیت و تأثیرگذاری هر مؤلفه بطور خاص، انعطاف پذیری و آزادی عمل بالایی را فراهم می‌کند. به منظور ارزیابی روش پیشنهادی، تعدادی آزمایش انجام و نتایج آن با چندین روش پیشرو مقایسه شد. نتایج این آزمایشات نشان می­دهند که روش پیشنهادی نسبت به الگوریتم­های کلاسیک این حوزه عملکرد بهتری از خود نشان می­دهد.

References   

 

1.        Gonzalez, R.C. and Woods, R.E., "Digital image processing", Prentice Hall,  Vol., No., (2002), 462-463.

2.        Alvarez, L., Lions, P.-L. and Morel, J.-M., "Image selective smoothing and edge detection by nonlinear diffusion. Ii", SIAM J. Numer. Anal.,  Vol. 29, No. 3, (1992), 845-866.

3.        Perona, P. and Malik, J., "Scale-space and edge detection using anisotropic diffusion", Pattern Analysis and Machine Intelligence, IEEE Transactions on,  Vol. 12, No. 7, (1990), 629-639.

4.        Rudin, L.I., Osher, S. and Fatemi, E., "Nonlinear total variation based noise removal algorithms", Physica D: Nonlinear Phenomena,  Vol. 60, No. 1–4, (1992), 259-268.

5.        Yaroslavsky, L. and Eden, M., "Fundamentals of digital optics, Birkhäuser Boston,  (1996).

6.        Smith, S.M. and Brady, J.M., "Susan—a new approach to low level image processing", Int. J. Comput. Vision,  Vol. 23, No. 1, (1997), 45-78.

7.        Yaroslavski, L.P., "Digital picture processing: An introduction, Springer-Verlag,  (1985).

8.        DONOHO, D.L. and JOHNSTONE, J.M., "Ideal spatial adaptation by wavelet shrinkage", Biometrika,  Vol. 81, No. 3, (1994), 425-455.

9.        Ordentlich, E., Seroussi, G., Verdu, S., Weinberger, M. and Weissman, T., "A discrete universal denoiser and its application to binary images", in Image Processing,. International Conference on. Vol. 111, (2003), 117-120

10.     Farbiz, F., Menhaj, M. and Motamedi, S., "A new iterative fuzzy-based method for image enhancement", International Journal of Engineering,  Vol. 13, No. 3, (2000), 69-74.

11.     Alvarez, L., Lions, P.-L. and Morel, J.-M., "Image selective smoothing and edge detection by nonlinear diffusion. II", SIAM Journal on Numerical Analysis,  Vol. 29, No. 3, (1992), 845-866.

12.     Catté, F., Lions, P.-L., Morel, J.-M. and Coll, T., "Image selective smoothing and edge detection by nonlinear diffusion", SIAM Journal on Numerical Analysis,  Vol. 29, No. 1, (1992), 182-193.

13.     Li, X. and Chen, T., "Nonlinear diffusion with multiple edginess thresholds", Pattern Recognition,  Vol. 27, No. 8, (1994), 1029-1037.

14.     Whitaker, R.T. and Pizer, S.M., "A multi-scale approach to nonuniform diffusion", CVGIP: Image Understanding,  Vol. 57, No. 1, (1993), 99-110.

15.     Weickert, J., "Coherence-enhancing diffusion filtering", International Journal of Computer Vision,  Vol. 31, No. 2-3, (1999), 111-127.

16.     Gilboa, G., Sochen, N. and Zeevi, Y.Y., "Forward-and-backward diffusion processes for adaptive image enhancement and denoising", Image Processing, IEEE Transactions on,  Vol. 11, No. 7, (2002), 689-703.

17.     Nadernejad, E., Hassanpour, H. and Miar, H., "Image restoration using a pde-based approach", International Journal of Engineering, Transaction B: Applications,  Vol. 20, No. 3, (2007), 225-236.

18.     Nikpour, M. and Hassanpour, H., "Using diffusion equations for improving performance of wavelet-based image denoising techniques", IET Image Processing,  Vol. 4, No. 6, (2010), 452-462.

19.     Nadernejad, E. and Forchhammer, S., "Wavelet-based image enhancement using fourth order pde", in Intelligent Signal Processing (WISP), 7th International Symposium on, IEEE. (2011), 1-6.

20.     Hassanpour, H. and Rostami Ghadi, A., "Image enhancement via reducing impairment effects on image components", International Journal of Engineering,  Vol. 26, No. 83, (2013), 921-930.

21.     Gonzalez, R.C. and Woods, R.E., "Digital image processing, Pearson/Prentice Hall,  (2008).

22.     Koenderink, J., "The structure of images", Biological Cybernetics,  Vol. 50, No. 5, (1984), 363-370.

23.     Hummel, R. and Moniot, R., "Reconstructions from zero crossings in scale space", Acoustics, Speech and Signal Processing, IEEE Transactions on,  Vol. 37, No. 12, (1989), 2111-2130.

24.     Rajan, J., Kannan, K. and Kaimal, M., "An improved hybrid model for molecular image denoising", Journal of Mathematical Imaging and Vision,  Vol. 31, No. 1, (2008), 73-79.

25.     Ling, J. and Bovik, A.C., "Smoothing low-snr molecular images via anisotropic median-diffusion", Medical Imaging, IEEE Transactions on,  Vol. 21, No. 4, (2002), 377-384.

26.     Nadernejad, E., "Improvement of nonlinear diffusion equation using relaxed geometric mean filter for low psnr images", Electronics Letters,  Vol. 49, No. 7, ( 28 March 2013), 457-458.

27.     Zhou Wang, A.C.B., "Modern image quality assessment, Synthesis lectures on image, video & multimedia processing, Morgan & Claypool Publication,  (2006).

28.     Z. Wang, A.C.B., H.R. Sheikh, and E.P. Simoncelli, "Image quality assessment: From error visibility to structural similarity.", IEEE Trans. Image Processing,  Vol. 13, No. 4, (2004), 600-612.

29.     Pratt, W.K., "Digital image processing: Piks scientific inside, Wiley,  (2007).

30.     John, C., "A computational approach to edge detection", IEEE Transactions on Pattern Analysis and Machine Intelligence,  Vol. 8, (1986), 679-698.

31.  Tripathi, A., Mukhopadhyay, S. and Dhara, A., "Performance metrics for image contrast", in Image Information Processing (ICIIP), International Conference on, IEEE. (2011), 1-4.   





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir