|

|
IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1339-1348
|
Downloaded:
350 |
|
Viewed:
2383 |
|
|
IMAGE DENOISING USING ANISOTROPIC DIFFUSION EQUATIONS ON REFLECTION AND ILLUMINATION COMPONENTS OF IMAGE
|
|
|
M. H. Khosravi and H. Hassanpour
|
|
|
( Received:
January 06, 2014
– Accepted: May 22, 2014 )
|
|
|
Abstract
This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image
denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy
image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its
special user-defined parameters .This hybridscheme donates a flexibility and customizability to the method, due to its
ability to separately enhanceeach component properly. In order to evaluate the proposed method effectiveness, a number
ofexperiments have been performed and the results have been compared with the results of other pioneeringmethods. The
good results indicate superiority of proposed method.
|
|
|
Keywords
Image denoising, Image smoothing, Anisotropic diffusion, Homomorphic filtering, Hybrid image enhancement
|
|
|
چکیده
در این مقاله، یک روش ترکیبی جدید مبتنی بر فیلتر همومورفیک و معادلات انتشار حرارت نامتقارن برای حذف نویز تصویر پیشنهاد شده است. در روش پیشنهادی با استفاده از فیلتر همومورفیک، تصویر نویزی به دو مولفۀ روشنایی و انعکاس تفکیک میشود. سپس هر یک از این دو مؤلفه، بطور جداگانه و با پارامترهای خاص آن مولفه، که توسط کاربر تعریف شدهاند، تحت تأثیر توابع نامتقارن انتشار حرارت قرار گرفته، نویززدایی میشوند. این روش ترکیبی، بدلیل توانایی آن در بهسازی بهینۀ هر یک از مؤلفهها بصورت تفکیک شده، و امکان تأکید بر اهمیت و تأثیرگذاری هر مؤلفه بطور خاص، انعطاف پذیری و آزادی عمل بالایی را فراهم میکند. به منظور ارزیابی روش پیشنهادی، تعدادی آزمایش انجام و نتایج آن با چندین روش پیشرو مقایسه شد. نتایج این آزمایشات نشان میدهند که روش پیشنهادی نسبت به الگوریتمهای کلاسیک این حوزه عملکرد بهتری از خود نشان میدهد.
|
|
References
1.
Gonzalez, R.C. and Woods, R.E., "Digital image processing", Prentice Hall, Vol., No., (2002), 462-463.
2.
Alvarez,
L., Lions, P.-L. and Morel, J.-M., "Image selective smoothing and edge
detection by nonlinear diffusion. Ii", SIAM J. Numer. Anal.,
Vol. 29, No. 3, (1992), 845-866.
3.
Perona,
P. and Malik, J., "Scale-space and edge detection using anisotropic
diffusion", Pattern Analysis and
Machine Intelligence, IEEE Transactions on, Vol. 12, No. 7, (1990), 629-639.
4.
Rudin,
L.I., Osher, S. and Fatemi, E., "Nonlinear total variation based noise
removal algorithms", Physica D:
Nonlinear Phenomena, Vol. 60,
No. 1–4, (1992), 259-268.
5.
Yaroslavsky,
L. and Eden, M., "Fundamentals of digital optics, Birkhäuser Boston, (1996).
6.
Smith,
S.M. and Brady, J.M.,
"Susan—a new approach to low level image processing", Int. J. Comput. Vision, Vol. 23, No. 1, (1997), 45-78.
7.
Yaroslavski,
L.P., "Digital picture processing: An introduction, Springer-Verlag, (1985).
8.
DONOHO,
D.L. and JOHNSTONE, J.M., "Ideal spatial adaptation by wavelet
shrinkage", Biometrika, Vol. 81, No. 3, (1994), 425-455.
9.
Ordentlich,
E., Seroussi, G., Verdu, S., Weinberger, M. and Weissman, T., "A discrete
universal denoiser and its application to binary images", in Image
Processing,. International Conference on. Vol. 111, (2003), 117-120
10. Farbiz, F., Menhaj, M. and Motamedi, S., "A new
iterative fuzzy-based method for image enhancement", International Journal of Engineering, Vol. 13, No. 3, (2000), 69-74.
11. Alvarez, L., Lions, P.-L. and Morel, J.-M.,
"Image selective smoothing and edge detection by nonlinear diffusion. II",
SIAM Journal on Numerical Analysis, Vol. 29, No. 3, (1992), 845-866.
12. Catté, F., Lions, P.-L., Morel, J.-M. and Coll, T.,
"Image selective smoothing and edge detection by nonlinear
diffusion", SIAM Journal on Numerical
Analysis, Vol. 29, No. 1,
(1992), 182-193.
13. Li, X. and Chen, T., "Nonlinear diffusion with
multiple edginess thresholds", Pattern
Recognition, Vol. 27, No. 8,
(1994), 1029-1037.
14. Whitaker, R.T. and Pizer, S.M., "A multi-scale
approach to nonuniform diffusion", CVGIP:
Image Understanding, Vol. 57,
No. 1, (1993), 99-110.
15. Weickert, J., "Coherence-enhancing diffusion
filtering", International Journal
of Computer Vision, Vol. 31, No.
2-3, (1999), 111-127.
16. Gilboa, G., Sochen, N. and Zeevi, Y.Y.,
"Forward-and-backward diffusion processes for adaptive image enhancement
and denoising", Image Processing,
IEEE Transactions on,
Vol. 11, No. 7, (2002), 689-703.
17. Nadernejad, E., Hassanpour, H. and Miar, H.,
"Image restoration using a pde-based approach", International Journal of Engineering, Transaction
B: Applications, Vol. 20,
No. 3, (2007), 225-236.
18. Nikpour, M. and Hassanpour, H., "Using
diffusion equations for improving performance of wavelet-based image denoising
techniques", IET Image Processing, Vol. 4, No. 6, (2010), 452-462.
19. Nadernejad, E. and Forchhammer, S.,
"Wavelet-based image enhancement using fourth order pde", in
Intelligent Signal Processing (WISP), 7th International Symposium on,
IEEE. (2011), 1-6.
20.
Hassanpour,
H. and Rostami Ghadi, A., "Image enhancement via reducing impairment
effects on image components", International
Journal of Engineering, Vol. 26,
No. 83, (2013), 921-930.
21. Gonzalez, R.C. and Woods, R.E., "Digital image
processing, Pearson/Prentice Hall, (2008).
22. Koenderink, J., "The structure of images",
Biological Cybernetics, Vol. 50, No. 5, (1984), 363-370.
23. Hummel, R. and Moniot, R., "Reconstructions
from zero crossings in scale space", Acoustics, Speech and Signal Processing, IEEE Transactions on, Vol. 37, No. 12, (1989), 2111-2130.
24. Rajan, J., Kannan, K. and Kaimal, M., "An
improved hybrid model for molecular image denoising", Journal of Mathematical Imaging and Vision, Vol. 31, No. 1, (2008), 73-79.
25. Ling, J. and Bovik, A.C., "Smoothing low-snr
molecular images via anisotropic median-diffusion", Medical Imaging, IEEE Transactions on, Vol. 21, No. 4, (2002), 377-384.
26. Nadernejad, E., "Improvement of nonlinear
diffusion equation using relaxed geometric mean filter for low psnr
images", Electronics Letters, Vol. 49, No. 7, ( 28 March 2013), 457-458.
27. Zhou Wang, A.C.B., "Modern image quality
assessment, Synthesis lectures on image, video & multimedia
processing, Morgan & Claypool Publication,
(2006).
28. Z. Wang, A.C.B., H.R. Sheikh, and E.P. Simoncelli,
"Image quality assessment: From error visibility to structural
similarity.", IEEE Trans. Image
Processing, Vol. 13, No. 4,
(2004), 600-612.
29. Pratt, W.K., "Digital image processing: Piks
scientific inside, Wiley, (2007).
30. John, C., "A computational approach to edge
detection", IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 8, (1986), 679-698.
31.
Tripathi,
A., Mukhopadhyay, S. and Dhara, A., "Performance metrics for image
contrast", in Image Information Processing (ICIIP), International
Conference on, IEEE. (2011), 1-4.
|
|
|
|
|