Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1367-1376    Article Under Proof

downloaded Downloaded: 169   viewed Viewed: 2320

  SPEECH ENHANCEMENT USING LAPLACIAN MIXTURE MODEL UNDER SIGNAL PRESENCE UNCERTAINTY
 
Z. Mohammadpoory and J. Haddadnia
 
( Received: August 24, 2013 – Accepted: May 22, 2014 )
 
 

Abstract    In this paper an estimator for speech enhancement based on Laplacian Mixture Model has been proposed. The proposed method, estimates the complex DFT coefficients of clean speech from noisy speech using the MMSE estimator, when the clean speech DFT coefficients are supposed mixture of Laplacians and the DFT coefficients of noise are assumed zero-mean Gaussian distribution. Furthermore, the MMSE estimator under speech presence uncertainty and the Laplacian Mixture Model were derived. It is shown that the proposed estimator has better performance than three estimators based on single Gaussian and single Laplacian models. Also under speech presence uncertainty the results become better.

 

Keywords    EM algorithm, Gaussian noise, Laplacian Mixture Model, Minimum Statistic,MMSE estimator, speech presence uncertainty

 

چکیده    در این مقاله یک روش بهسازی گفتار آماری با فرض توزیع مخلوط لاپلاس برای گفتار، برای تخمین سیگنال گفتار تمیز (بدون نویز) از سیگنال گفتار نویزی ارائه شده است. در روش پیشنهادی، ضرایب تبدیل فوریه زمان کوتاه گسسته سیگنال گفتار با استفاده از تخمین گر کمترین میانگین مربعات خطا، بدست می آید. در این تخمین، فرض می شود که تابع چگالی احتمال ضرایب تبدیل فوریه سیگنال تمیز و نویز به ترتیب، مخلوط لاپلاس و گوسی با میانگین صفر می باشد. همچنین برا بهبود نتایج تخمین طیف با الحاق عدم فطعیت گفتار محاسبه شده است. نتایج حاصل از معیارهای SNRقطعه ای، LLR و PESQ نشان می دهد که روش پیشنهادی عملکرد بهتری نسبت به دو روش مبتنی بر توزیع گوسی و روش مبتنی بر توزیع لاپلاس دارد و با الحاق عدم قطعیت گفتار به تخمین گر، نتایج بهتر می شوند.

References   

 

1.     Abad, P.L., "Optimal price and lot size when the supplier offers a temporary price reduction over an interval", Computers & Operations Research,  Vol. 30, No. 1, (2003), 63-74.

2.     Boyacı, T. and Gallego, G., "Coordinating pricing and inventory replenishment policies for one wholesaler and one or more geographically dispersed retailers", International Journal of Production Economics,  Vol. 77, No. 2, (2002), 95-111.

3.     Huang, Y., Huang, G.Q. and Newman, S.T., "Coordinating pricing and inventory decisions in a multi-level supply chain: A game-theoretic approach", Transportation Research Part E: Logistics and Transportation Review,  Vol. 47, No. 2, (2011), 115-129.

4.     Kim, D. and Lee, W.J., "Optimal joint pricing and lot sizing with fixed and variable capacity", European Journal of Operational Research,  Vol. 109, No. 1, (1998), 212-227.

5.     Maihami, R. and Nakhai Kamalabadi, I., "Joint pricing and inventory control for non-instantaneous deteriorating items with partial backlogging and time and price dependent demand", International Journal of Production Economics,  Vol. 136, No. 1, (2012), 116-122.

6.     Mahmoudi, M. and Tofigh, A.A., "Application of game theory in dynamic competitive pricing leader and n dependent followers", International Journal of Engineering,  Vol. 25, No., (2012), 35-43.

7.     Jain, M., Sharma, G. and Rathore, S., "Economic production quantity models with shortage, price and stock-dependent demand for deteriorating items", International Journal of Engineering Transactions A Basics,  Vol. 20, No. 2, (2007), 159.

8.     Heng, J., "Price and quantity setting for seasonal retail goods with stochastic demands", Senior Thesis, (1995).

9.     Aviv, Y. and Pazgal, A., "Optimal pricing of seasonal products in the presence of forward-looking consumers and prospects", Journal of Manufacturing and Service Operations Management,,  Vol. 10, No., (2008), 339-359.

10.   You, P.-S. and Chen, T.C., "Dynamic pricing of seasonal goods with spot and forward purchase demands", Computers & Mathematics with Applications,  Vol. 54, No. 4, (2007), 490-498.

11.   Soysal, G.P. and Krishnamurthi, L., "Demand dynamics in the seasonal goods industry: An empirical analysis", Marketing Science,  Vol. 31, No. 2, (2012), 293-316.

12.   Chopra, S. and Meindl, P., "Supply chain management. Strategy, planning & operation, Springer,  (2007).

13.   Kim, S.-W. and Bell, P.C., "Optimal pricing and production decisions in the presence of symmetrical and asymmetrical substitution", Omega,  Vol. 39, No. 5, (2011), 528-538.

14.   Karakul, M. and Chan, L.M.A., "Joint pricing and procurement of substitutable products with random demands–a technical note", European Journal of Operational Research,  Vol. 201, No. 1, (2010), 324-328.

15.   Bitran, G., Caldentey, R. and Vial, R., "Pricing policies for perishable products with demand substitution", City,  (2006).

16.   Burkart, W.R., Klein, R. and Mayer, S., "Product line pricing for services with capacity constraints and dynamic substitution", European Journal of Operational Research,  Vol. 219, No. 2, (2012), 347-359.

17.   Dong, L., Kouvelis, P. and Tian, Z., "Dynamic pricing and inventory control of substitute products", Manufacturing & Service Operations Management,  Vol. 11, No. 2, (2009), 317-339.

18.   Bish, E.K. and Suwandechochai, R., "Optimal capacity for substitutable products under operational postponement", European Journal of Operational Research,  Vol. 207, No. 2, (2010), 775-783.

19.   Stavrulaki, E., "Inventory decisions for substitutable products with stock-dependent demand", International Journal of Production Economics,  Vol. 129, No. 1, (2011), 65-78.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir