IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1423-1430    Article Under Proof

downloaded Downloaded: 306   viewed Viewed: 2155

H. A. Afrasiabi, G. R. Khayati and M. Ehteshamzadeh
( Received: November 24, 2013 – Accepted: April 17, 2014 )

Abstract    In this study the Taguchi method, has been applied to optimize the heat treatment parameters for the corrosion resistance of AA6061 aluminum alloy. The experimental design consisted of four parameters (aging temperature, aging time, quenching environment and NaCl concentration), each containing three levels. Tafel polarization measurements were carried out to determine the corrosion resistance of the heat treatment samples. According to the mean of signal-to-noise ratio analysis, the corrosion resistance of AA6061-T6 aluminum alloy was influenced significantly by the levels in the Taguchi orthogonal array. The optimized parameters for corrosion resistance are 2 h for aging time, 200 °C for aging temperature, ice water for quenching media and environment with 0.5% for NaCl concentration. The percentage of contribution for each parameter was determined by the analysis of variance. The results showed that the NaCl concentration is the most significant parameter affecting the corrosion resistance of the AA6061 Al alloy.


Keywords    Keywords Heat treatment, AA606-T6 A1 aluminum alloy, Tafel polarization, Analysis of variance


چکیده    در اين مقاله از روش تاگوچي براي بهينه‌سازي پارامترهاي عمليات حرارتي به منظور بهبود مقاومت خوردگي آلياژ 6061 آلومينيم استفاده شد. طراحي آزمايش با استفاده از چهار پارامتر (دماي پيرسازي، زمان پيرسازي، محيط خنک کننده و غلظت نمک طعام) هر کدام حاوي سه سطح صورت گرفت. آناليز پلاريزاسيون تافل براي تعيين مقادمت به خوردگي نمونه‌ها پس از عمليات حرارتي استفاده گرديد. با استفاده از آناليز ميانگين نسبت سيگنال به نويز، مقادمت خوردگي نمونه‌هاي از آرايه هاي ارتوگونال در سطوح متفاوت روش تاگوچي مشخص گرديد. زمان پيرسازي h2 در دماي پيرسازي °C200 با محيط خنک کننده آب يخ در محيط با 5/0 درصد وزني نمک طعام شرايط بهينه براي بهترين مقاومت به خوردگي را دارد. سهم هريک از پارامترها با استفاده از آناليز واريانس مشخص گرديد. نتايج نشان داد که غلظت نمک طعام مهمترين پارامتر اثرگذار برا مقاومت خوردگي آلياژ AA6061 است.



1.     Guillaumin, V. and Mankowski, G., "Localized corrosion of 6056 t6 aluminium alloy in chloride media", Corrosion Science,  Vol. 42, No. 1, (2000), 105-125.

2.     Tan, E. and ÖGEL, B., "Influence of heat treatment on the mechanical properties of aa6066 alloy", Turkish Journal of Engineering and Environmental Sciences,  Vol. 31, No. 1, (2007), 53-60.

3.     Fa-Hem, C., Zhao, Z., Jn-Feng, L. and Ying-Liang, C., "Corrosion behavior of two heat treatment al-zn-mg-cu alloys in different intergranular corrosion solution", Transactions of Nonferrous Metals Society of China,  Vol. 50, (2008), 619-625.

4.     Zaid, B., Saidi, D., Benzaid, A. and Hadji, S., "Effects of ph and chloride concentration on pitting corrosion of aa6061 aluminum alloy", Corrosion Science,  Vol. 50, No. 7, (2008), 1841-1847.

5.     Khavasfar, A., Moayed, M.H. and H., J.A., "An investigation on the performance of an imidazoline based commercial corrosion inhibitor on corrosion of mild steel", International Journal of Engineering,  Vol. 20, No. 1, (2007), 35-44.

6.     Poursaeidi, E. and Pedram, O., "An outrun competition of corrosion fatigue and stress corrosion cracking on crack initiation in a compressor blade", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 5, (2013), 785.

7.     Venugopal, A., Panda, R., Manwatkar, S., Sreekumar, K., Krishna, L. and Sundararajan, G., "Effect of micro arc oxidation treatment on localized corrosion behaviour of aa7075 aluminum alloy in 3.5% nacl solution", Transactions of Nonferrous Metals Society of China,  Vol. 22, No. 3, (2012), 700-710.

8.     Davis, J.R., "Aluminum and aluminum alloys", ASM international,  (1993).

9.     Saatchi, A., Pyle, T., Barton, A. and Van Bronswijk, W., "Electrochemical noise analysis of anaerobic (bacterial) corrosion of steel", International Journal of Engineering,  Vol. 4, No. 1&2, (1991), 53-60.

10.   El-Menshawy, K., El-Sayed, A.-W.A., El-Bedawy, M.E., Ahmed, H.A. and El-Raghy, S.M., "Effect of aging time at low aging temperatures on the corrosion of aluminum alloy 6061", Corrosion Science,  Vol. 54, No., (2012), 167-173.

11.   Ozturk, F., Sisman, A., Toros, S., Kilic, S. and Picu, R., "Influence of aging treatment on mechanical properties of 6061 aluminum alloy", Materials & Design,  Vol. 31, No. 2, (2010), 972-975.

12.   Svenningsen, G., Larsen, M.H., Nordlien, J.H. and Nisancioglu, K., "Effect of high temperature heat treatment on intergranular corrosion of almgsi (Cu) model alloy", Corrosion Science,  Vol. 48, No. 1, (2006), 258-272.

13.   Phadke, M.S., "Quality engineering using robust design, Prentice Hall PTR,  (1995).

14.   Bement, T.R., "Taguchi techniques for quality engineering", Technometrics,  Vol. 31, No. 2, (1989), 253-255.

15.   Fontana, M.G., "Corrosion engineering, Tata McGraw-Hill Education,  (2005).

16.   Aliofkhazraee, M. and Sabour Rouhaghdam, A., "Pulsed nanocrystalline plasma electrolytic carburising for corrosion protection of a γ-tial alloy: Part 2. Constant frequency and duty cycle", Journal of Alloys and Compounds,  Vol. 462, No. 1, (2008), 421-427.

17.   Kim, K.D., Choi, D.W., Choa, Y.-H. and Kim, H.T., "Optimization of parameters for the synthesis of zinc oxide nanoparticles by taguchi robust design method", Colloids and Surfaces A: Physicochemical and Engineering Aspects,  Vol. 311, No. 1, (2007), 170-173.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir