Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1431-1438    Article Under Proof

downloaded Downloaded: 392   viewed Viewed: 3058

  OPTIMIZATION OF DOUBLE PIPE FIN-PIN HEAT EXCHANGER USING ENTROPY GENERATION MINIMIZATION
 
M. Taghilou, B. Ghadimi and M. H. Seyyedvalilu
 
( Received: August 11, 2013 – Accepted: May 22, 2014 )
 
 

Abstract    In the current work optimization of double pipe fin-pin heat exchanger has been studied. The effective parameters those are controlling the heat exchanger performance are divided in two categories; geometrical and operating conditions. Using the Brent’s optimization algorithm and handling the thermodynamically design concept, one can minimize entropy generation in different length of heat exchanger. In this paper, pins longitudinal SL and transversal ST distances are chosen as the design variables in different heat exchanger length between 200 and 920 mm. In all calculations a constant value was applied for the ratio of heat flux to the heat exchanger length as . Results showed that, in all conditions entropy generation number decreased and consequently lead to reduction in pumping power and manufacturing costs.

 

Keywords    Double pipe heat exchanger, Fin-pin, Entropy generation, Optimization

 

چکیده    در کار حاضر بهینه سازی عملکرد مبادله‏کن‏های دولوله‏ای با پره‏های سوزنی داخلی مورد مطالعه قرار می‏گیرد. اساساً عوامل موثر بر ضریب تأثیر مبادله کن گرما وابسته به متغیر‏های هندسی و مشخصات عملکردی است. با استفاده از روش‏ بهینه‏سازی برنت و با تکیه بر مفهوم طراحی ترمودینامیکی می‏توان در طول‏های مختلف مبادله‏کن، تولید آنتروپی را به حداقل رساند. در این تحقیق گستره تغییر طول از 200 میلی متر تا 920 میلی متر تحت گام‏های طولی و عرضی مختلف برای پره‏ها به عنوان متغیر‏های طراحی منظور شده است. همچنین در تمامی محاسبات نسبت شار حرارتی به طول مبادله‏کن مقدار ثابت در نظر گرفته شده است. نتایج بدست آمده در همه حالات، حاکی از کاهش عدد تولید آنتروپی و در نهایت کاهش هزینه ثابت (قیمت ساخت) و هزینه جاری (توان تأمین دبی مورد نیاز) می‏باشد.

References   

1.     DeylamiH.M., Amanifard N., Sanaei M., KouhikamaliR. and "Numerical investigation of heat transfer pressure drop in acorrugated channel", International Journal of Engineering  Transactions A: Basics,  Vol. 26, No. 7, (2013), 771-780.

2.     Pussoli, B.F., Barbosa Jr, J.R., da Silva, L.W. and Kaviany, M., "Optimization of peripheral finned-tube evaporators using entropy generation minimization", International Journal of Heat and Mass Transfer,  Vol. 55, No. 25, (2012), 7838-7846.

3.     Bejan A., " Advanced engineering thermodynamics" ., (1988).

4.     Bejan, A., "Entropy generation minimization: The method of thermodynamic optimization of finite-size systems and finite-time processes, CRC press,  (1995).

5.     Naphon, P., "Second law analysis on the heat transfer of the horizontal concentric tube heat exchanger", International Communications in Heat and Mass Transfer,  Vol. 33, No. 8, (2006), 1029-1041.

6.     Narayan, G.P., Lienhard, J.H. and Zubair, S.M., "Entropy generation minimization of combined heat and mass transfer devices", International Journal of Thermal Sciences,  Vol. 49, No. 10, (2010), 2057-2066.

7.     Guo, J., Cheng, L. and Xu, M., "Optimization design of shell-and-tube heat exchanger by entropy generation minimization and genetic algorithm", Applied Thermal Engineering,  Vol. 29, No. 14, (2009), 2954-2960.

8.     Ogulata, R. and Doba, F., "Experiments and entropy generation minimization analysis of a cross-flow heat exchanger", International Journal of Heat and Mass Transfer,  Vol. 41, No. 2, (1998), 373-381.

9.     Hadidi, A., Hadidi, M. and Nazari, A., "A new design approach for shell-and-tube heat exchangers using imperialist competitive algorithm (ica) from economic point of view", Energy Conversion and Management,  Vol. 67, (2013), 66-74.

10.   Yousefi M., Darus A. N., a.M.H. and “”, "Entropy generation minimization in a plate fin heat exchanger by a social-political based evolutionary algorithm", International Conference on Advancements in Information Technology, IACSIT Press, Singapore., (2011).

11.   Giangaspero, G. and Sciubba, E., "Application of the entropy generation minimization method to a solar heat exchanger: A pseudo-optimization design process based on the analysis of the local entropy generation maps", Energy,  Vol. 58, (2013), 52-65.

12.   Ghassabi, G. and Kahrom, M., "Optimization of heat transfer enhancement of a domestic gas burner based on pareto genetic algorithm: Experimental and numerical approach", International Journal of Engineering,  Vol. 26, (2013), 211-230.

13.   Amanifard, N., Hajiloo, A. and Tohidi, N., "Using neural networks and genetic algorithms for modelling and multi-objective optimal heat exchange through a tube bank", International Journal of Engineering-Transactions C: Aspects,  Vol. 25, No. 4, (2012), 321-230.

14.   Sahiti, N., Krasniqi, F., Fejzullahu, X., Bunjaku, J. and Muriqi, A., "Entropy generation minimization of a double-pipe pin fin heat exchanger", Applied Thermal Engineering,  Vol. 28, No. 17, (2008), 2337-2344.

15.   Holman, J., "Heat transfer, 1986", Mc Gran–Hill Book Company, Soythern Methodist University,  Vol., No., (1986).

16.   Zukauskas, A., "Convective heat transfer in cross flow, Wiley, New York,  Vol. 6,  (1987).

17.   Yilmaz, M., Sara, O. and Karsli, S., "Performance evaluation criteria for heat exchangers based on second law analysis", Exergy, an International Journal,  Vol. 1, No. 4, (2001), 278-294.

18.   Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical recipes: The art of scientific computing (cambridge. 1992, Cambridge Univ. Press.

19.   Brent, R.P., "Algorithms for minimization without derivatives, Courier Dover Publications,  (1973).





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir