|

|
IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1439-1448
|
Downloaded:
209 |
|
Viewed:
3036 |
|
|
TRACKING AND SHAPE CONTROL OF A MICRO-CANTILEVER USING ELECTROSTATIC ACTUATION
|
|
|
F. Karami, H. Salarieh and R. Shabani
|
|
|
( Received:
November 02, 2013
– Accepted: May 22, 2014 )
|
|
|
Abstract
In this paper the problems of state estimation, tracking control and shape control in a
micro-cantilever beam with
nonlinear electrostatic actuation are investigated. The system’s
partial differential equation of motion is
converted into a set of ordinary differential equations
by projection method. Observabillity of the system is proven and
a state estimation system is
designed using extended Kalman filter (EKF) algorithm. A tracking control system is
designed to make
a specific point of the beam follow a reference signal. The effect of mode selection to include
in
model on controller performance is also investigated. Based on the tracking controller a shape
control algorithm is
designed to form the shape of beam into a desired shape. The proposed
algorithms are validated by numerical simulation
and resulted in a promising performance.
|
|
|
Keywords
micro-cantilever, electrostatic actuation, state estimation, tracking control, shape control.
|
|
|
چکیده
در اين مقاله مسأله تخمين متغيرهاي حالت، کنترل رهگيري و کنترل شکل يک ميکروتير يکسردرگير با تحريک غيرخطي الکترواستاتيکي مورد بررسي قرار گرفته است. براي اين منظور معادلات ديفرانسيل پارهاي سيستم با استفاده از روش گالرکين به يک ست از معادلات ديفرانسيل معمولي تبديل شده است. پس از اثبات مشاهدهپذيري سيستم يک الگوريتم تخمين متغيرهاي حالت براي آن بر اساس روش کالمن فيلتر توسعه يافته طراحي شده و از متغيرهاي تخمين زده شده، در سيستم کنترل مورد بحث استفاده شده است. سيستم کنترل به منظور کنترل مسير حرکت نقاط مورد نظر از تير طراحي شده و اثر مودهاي منتخب براي کنترل بر روي اين کنترل کننده مورد بررسي قرار گرفت. در پايان با استفاده از کنترلکننده مسير طراحي شده، يک الگوريتم کنترل شکل براي تير پيشنهاد گرديد. مجموعه اين الگوريتمها با استفاده از شبيهسازي عددي صحهگذاري شده و نتايج مورد بحث قرار گرفتهاند.
|
|
References
1.
Younis, M.I.,
"Mems linear and nonlinear statics and dynamics: Mems linear and nonlinear
statics and dynamics, Springer, Vol.
20, (2011).
2.
Seok, J. and Scarton, H.A., "Dynamic characteristics
of a beam angular-rate sensor", International Journal of Mechanical Sciences, Vol. 48, No. 1, (2006), 11-20.
3.
Kamisuki, S., Fujii, M., Takekoshi, T., Tezuka, C. and
Atobe, M., "A high resolution, electrostatically-driven commercial inkjet
head", in Micro Electro Mechanical Systems, 2000. MEMS 2000. The
Thirteenth Annual International Conference on, IEEE. Vol., No. Issue, (2000),
793-798.
4.
Chu, L.L., Que, L. and Gianchandani, Y.B.,
"Measurements of material properties using differential capacitive strain
sensors", Microelectromechanical Systems, Journal of, Vol. 11, No. 5, (2002), 489-498.
5.
Hassanpour, P.A., Nieva, P.M. and Khajepour, A.,
"Stochastic analysis of a novel force sensor based on bifurcation of a
micro-structure", Journal of Sound and Vibration, Vol. 330, No. 23, (2011), 5753-5768.
6.
Yasuda, T., Shimoyama, I. and Miura, H.,
"Electrostatically driven micro elastic joints", in Intelligent
Robots and Systems 95.'Human Robot Interaction and Cooperative Robots',
Proceedings. IEEE/RSJ International Conference on, IEEE. Vol. 2, (1995),
241-252.
7.
Chau, H.L. and Wise, K.D., "An ultra miniature
solid-state pressure sensor for a cardiovascular catheter", IEEE
Transactions on Electron Devices,
Vol. 35, (1988), 2355-2362.
8.
Ganji, B. and Nateri, M.S., "Modeling of
capacitance and sensitivity of a mems pressure sensor", International
Journal of Engineering-Transactions B: Applications, Vol. 26, No. 11,
(2013), 1331-1340.
9.
Abdel-Rahman, E.M., Younis, M.I. and Nayfeh, A.H.,
"Characterization of the mechanical behavior of an electrically actuated
microbeam", Journal of Micromechanics and Microengineering, Vol. 12, No. 6, (2002), 759-770.
10. Brusa, E., DeBona, F.,
Gugliotta, A. and Soma, A., "Modeling and prediction of the dynamic
behaviour of microbeamsunder electrostatic load", AnalogIntegrated Circuits and
Signal Processing, Vol. 40, No.
2, (2004), 155-164.
11. Batra, R.C., Porfiri,
M. and Spinello, D., "Electromechanical model of electrically actuated
narrow microbeams", Microelectromechanical Systems, Journal of, Vol. 15, No. 5,(2006), 1175-1189
12. Mojahedi, M., Moghimi
Zand, M. and Ahmadian, M., "Static pull-in analysis of electrostatically
actuated microbeams using homotopy perturbation method", Applied
Mathematical Modelling, Vol. 34,
No. 4, (2010), 1032-1041.
13. Abbasnejad, B.,
Shabani, R. and Rezazadeh, G., "Stability analysis in parametrically
excited electrostatic torsional micro-actuators", International Journal of
Engineering-Transactions C: Aspects,
Vol. 27, No. 3, (2013), 487.
14. Rezazadeh, G.,
Tahmasebi, A. and Ziaei-rad, S., "Nonlinear electrostatic behavior for two
elastic parallel fixed–fixed and cantilever microbeams", Mechatronics,
Vol. 19, No. 6, (2009), 840-846.
15. Ganji, B.A. and
Mousavi, A., "Accurate determination of pull-in voltage for mems
capacitive devices withclamped square diaphragm", International Journal of
Engineering Transactions B: Applications, Vol. 25, No. 3, (2012), 161-166.
16. Lakrad, F. and Belhaq,
M., "Suppression of pull-in instability in mems using a high-frequency
actuation", Communications in Nonlinear Science and
Numerical Simulation,
Vol. 15, No. 11, (2010), 3640-3646.
17. Wang, P.,
"Feedback control of vibrations in a micromachined cantilever beam with
electrostatic actuators", Journal of Sound and Vibration, Vol. 213, No. 3, (1998), 537-550.
18. Kharrat, C., Colinet,
E. and Voda, A., "Microbeam dynamic shaping by closed-loop electrostatic
actuation using modal control", in Research in Microelectronics and
Electronics Conference,. PRIME (2007),
197-205
19. Kharrat, C., Colinet,
E. and Voda, A., "A robust control method for electrostatic microbeam
dynamic shaping with capacitive detection", in Proceedings of the 17th
World Congress, The International Federation of Automatic Control. (2008),
568-573.
20.
Vagia,
M., Nikolakopoulos, G. and Tzes, A., "Design of a robust pid-control
switching scheme for an electrostatic micro-actuator", Control
Engineering Practice, Vol. 16,
No. 11, (2008), 1321-1328.
21. Vagia, M., "A
frequency independent approximation and a sliding mode control scheme for a
system of a micro-cantilever beam", ISA Transactions, Vol. 51, No. 2, (2012), 325-332.
22. Kucuk, I., Sadek, I.S.,
Zeini, E. and Adali, S., "Optimal vibration control of piezolaminated
smart beams by the maximum principle", Computers & Structures, Vol. 89, No. 9, (2011), 744-749.
23.
2Hu, F., Yao, J., Qiu, C. and Ren, H.,
"A mems micromirror driven by electrostatic force", Journal
of Electrostatics, Vol. 68, No.
3, (2010), 237-242.
24. Bonora, S.,
"Distributed actuators deformable mirror for adaptive optics", Optics
Communications, Vol. 284, No.
13, (2011), 3467-3473.
25. Cugat, O., Basrour, S.,
Divoux, C., Mounaix, P. and Reyne, G., "Deformable magnetic mirror for
adaptive optics: Technological aspects", Sensors
and Actuators A: Physical, Vol.
89, No. 1, (2001), 1-9.
26. Vatankhah, R., Karami,
F., Salarieh, H., Alasty, A. and "Stabilization of a vibrating
non-classical micro-cantilever using electrostatic actuation", ScientiaIranica:
Transaction on Mechanical Engineering,
Vol. 20, No. 6, (2013), 1824- 1831.
27.
Besançon,
G., "Nonlinear observers and applications", Lecture Notes in Control and Information
Sciences, 1st Edition, Springer, Berlin, Heidelberg, New York.
|
|
|
|
|