Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1439-1448    Article Under Proof

downloaded Downloaded: 209   viewed Viewed: 3036

  TRACKING AND SHAPE CONTROL OF A MICRO-CANTILEVER USING ELECTROSTATIC ACTUATION
 
F. Karami, H. Salarieh and R. Shabani
 
( Received: November 02, 2013 – Accepted: May 22, 2014 )
 
 

Abstract    In this paper the problems of state estimation, tracking control and shape control in a micro-cantilever beam with nonlinear electrostatic actuation are investigated. The system’s partial differential equation of motion is converted into a set of ordinary differential equations by projection method. Observabillity of the system is proven and a state estimation system is designed using extended Kalman filter (EKF) algorithm. A tracking control system is designed to make a specific point of the beam follow a reference signal. The effect of mode selection to include in model on controller performance is also investigated. Based on the tracking controller a shape control algorithm is designed to form the shape of beam into a desired shape. The proposed algorithms are validated by numerical simulation and resulted in a promising performance.

 

Keywords    micro-cantilever, electrostatic actuation, state estimation, tracking control, shape control.

 

چکیده    در اين مقاله مسأله تخمين متغيرهاي حالت، کنترل رهگيري و کنترل شکل يک ميکروتير يکسردرگير با تحريک غيرخطي الکترواستاتيکي مورد بررسي قرار گرفته است. براي اين منظور معادلات ديفرانسيل پاره‌اي سيستم با استفاده از روش گالرکين به يک ست از معادلات ديفرانسيل معمولي تبديل شده است. پس از اثبات مشاهده‌پذيري سيستم يک الگوريتم تخمين متغيرهاي حالت براي آن بر اساس روش کالمن فيلتر توسعه يافته طراحي شده و از متغيرهاي تخمين زده شده، در سيستم کنترل مورد بحث استفاده شده است. سيستم کنترل به منظور کنترل مسير حرکت نقاط مورد نظر از تير طراحي شده و اثر مودهاي منتخب براي کنترل بر روي اين کنترل کننده مورد بررسي قرار گرفت. در پايان با استفاده از کنترل‌کننده مسير طراحي شده، يک الگوريتم کنترل شکل براي تير پيشنهاد گرديد. مجموعه اين الگوريتم‌ها با استفاده از شبيه‌سازي عددي صحه‌گذاري شده و نتايج مورد بحث قرار گرفته‌اند.

References   

1.        Younis, M.I., "Mems linear and nonlinear statics and dynamics: Mems linear and nonlinear statics and dynamics, Springer,  Vol. 20,  (2011).

2.        Seok, J. and Scarton, H.A., "Dynamic characteristics of a beam angular-rate sensor", International Journal of Mechanical Sciences,  Vol. 48, No. 1, (2006), 11-20.

3.        Kamisuki, S., Fujii, M., Takekoshi, T., Tezuka, C. and Atobe, M., "A high resolution, electrostatically-driven commercial inkjet head", in Micro Electro Mechanical Systems, 2000. MEMS 2000. The Thirteenth Annual International Conference on, IEEE. Vol., No. Issue, (2000), 793-798.

4.        Chu, L.L., Que, L. and Gianchandani, Y.B., "Measurements of material properties using differential capacitive strain sensors", Microelectromechanical Systems, Journal of,  Vol. 11, No. 5, (2002), 489-498.

5.        Hassanpour, P.A., Nieva, P.M. and Khajepour, A., "Stochastic analysis of a novel force sensor based on bifurcation of a micro-structure", Journal of Sound and Vibration,  Vol. 330, No. 23, (2011), 5753-5768.

6.        Yasuda, T., Shimoyama, I. and Miura, H., "Electrostatically driven micro elastic joints", in Intelligent Robots and Systems 95.'Human Robot Interaction and Cooperative Robots', Proceedings. IEEE/RSJ International Conference on, IEEE. Vol. 2, (1995), 241-252.

7.        Chau, H.L. and Wise, K.D., "An ultra miniature solid-state pressure sensor for a cardiovascular catheter", IEEE Transactions on Electron Devices,  Vol. 35, (1988), 2355-2362.

8.        Ganji, B. and Nateri, M.S., "Modeling of capacitance and sensitivity of a mems pressure sensor", International Journal of Engineering-Transactions B: Applications, Vol. 26, No. 11, (2013), 1331-1340.

9.        Abdel-Rahman, E.M., Younis, M.I. and Nayfeh, A.H., "Characterization of the mechanical behavior of an electrically actuated microbeam", Journal of Micromechanics and Microengineering,  Vol. 12, No. 6, (2002), 759-770.

10.     Brusa, E., DeBona, F., Gugliotta, A. and Soma, A., "Modeling and prediction of the dynamic behaviour of microbeamsunder electrostatic load", AnalogIntegrated Circuits and Signal Processing,  Vol. 40, No. 2, (2004), 155-164.

11.     Batra, R.C., Porfiri, M. and Spinello, D., "Electromechanical model of electrically actuated narrow microbeams", Microelectromechanical Systems, Journal of,  Vol. 15, No. 5,(2006), 1175-1189

12.     Mojahedi, M., Moghimi Zand, M. and Ahmadian, M., "Static pull-in analysis of electrostatically actuated microbeams using homotopy perturbation method", Applied Mathematical Modelling,  Vol. 34, No. 4, (2010), 1032-1041.

13.     Abbasnejad, B., Shabani, R. and Rezazadeh, G., "Stability analysis in parametrically excited electrostatic torsional micro-actuators", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 3, (2013), 487.

14.     Rezazadeh, G., Tahmasebi, A. and Ziaei-rad, S., "Nonlinear electrostatic behavior for two elastic parallel fixed–fixed and cantilever microbeams", Mechatronics, Vol. 19, No. 6, (2009), 840-846.

15.     Ganji, B.A. and Mousavi, A., "Accurate determination of pull-in voltage for mems capacitive devices withclamped square diaphragm", International Journal of Engineering Transactions B: Applications,  Vol. 25, No. 3, (2012), 161-166.

16.     Lakrad, F. and Belhaq, M., "Suppression of pull-in instability in mems using a high-frequency actuation", Communications in Nonlinear Science and Numerical Simulation,  Vol. 15, No. 11, (2010), 3640-3646.

17.     Wang, P., "Feedback control of vibrations in a micromachined cantilever beam with electrostatic actuators", Journal of Sound and Vibration,  Vol. 213, No. 3, (1998), 537-550.

18.     Kharrat, C., Colinet, E. and Voda, A., "Microbeam dynamic shaping by closed-loop electrostatic actuation using modal control", in Research in Microelectronics and Electronics Conference,. PRIME (2007), 197-205

19.     Kharrat, C., Colinet, E. and Voda, A., "A robust control method for electrostatic microbeam dynamic shaping with capacitive detection", in Proceedings of the 17th World Congress, The International Federation of Automatic Control. (2008), 568-573.

20.      Vagia, M., Nikolakopoulos, G. and Tzes, A., "Design of a robust pid-control switching scheme for an electrostatic micro-actuator", Control Engineering Practice,  Vol. 16, No. 11, (2008), 1321-1328.

21.     Vagia, M., "A frequency independent approximation and a sliding mode control scheme for a system of a micro-cantilever beam", ISA Transactions,  Vol. 51, No. 2, (2012), 325-332.

22.     Kucuk, I., Sadek, I.S., Zeini, E. and Adali, S., "Optimal vibration control of piezolaminated smart beams by the maximum principle", Computers & Structures,  Vol. 89, No. 9, (2011), 744-749.

23.     2Hu, F., Yao, J., Qiu, C. and Ren, H., "A mems micromirror driven by electrostatic force", Journal of Electrostatics,  Vol. 68, No. 3, (2010), 237-242.

24.     Bonora, S., "Distributed actuators deformable mirror for adaptive optics", Optics Communications,  Vol. 284, No. 13, (2011), 3467-3473.

25.     Cugat, O., Basrour, S., Divoux, C., Mounaix, P. and Reyne, G., "Deformable magnetic mirror for adaptive optics: Technological aspects", Sensors and Actuators A: Physical,  Vol. 89, No. 1, (2001), 1-9.

26.     Vatankhah, R., Karami, F., Salarieh, H., Alasty, A. and "Stabilization of a vibrating non-classical micro-cantilever using electrostatic actuation", ScientiaIranica: Transaction on Mechanical Engineering,  Vol. 20, No. 6, (2013), 1824- 1831.

27.     Besançon, G., "Nonlinear observers and applications", Lecture Notes in Control and Information Sciences, 1st Edition, Springer, Berlin, Heidelberg, New York. 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir