|

|
IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1467-1474
|
Downloaded:
323 |
|
Viewed:
2185 |
|
|
YOUNG S MODULUS OF SINGLE AND DOUBLE WALLED CARBON NANOCONES USING FINITE ELEMENT METHOD(TECHNICAL NOTE)
|
|
|
M. Mohammadian and A. Fereidoon
|
|
|
( Received:
November 08, 2013
– Accepted: May 22, 2014 )
|
|
|
Abstract
In this paper a three-dimensional finite element (FE) model of carbon nanocones (CNCs) is proposed and used for
obtaining Young\\\'s modulus of CNCs. In this model, stretching and bending forces between carbon atoms are simulated
using truss elements in ANSYS software. Then the model is subjected to the tension and by obtaining the stiffness of the
CNC and using elasticity theory, Young’s modulus is calculated. The results showed that for a fixed length of CNC,
the modulus increase with the increase in diameter whereas it decreases by increasing the apex angle. Also,
Young’s modulus of double walled carbon nanocoes (DWCNCs) obtained between the values of each layer. Furthermore,
it is showed that elastic modulus can be effected by defects and their positions in CNC.
|
|
|
Keywords
Carbon nanocones, Truss model, LINK8 element, ANSYS
|
|
|
چکیده
در اين مقاله يک مدل المان محدود سه بعدي از نانومخروط هاي کربني ارائه شده و از آن جهت بدست آوردن مدول يانگ نانومخروط کربني تک لايه و دولايه استفاده گرديده است. در اين مدل نيروهاي کششي و خمشي بين اتم هاي کربن با استفاده از المان هاي خرپا در نرم افزار انسيس شبيه سازي شده و سپس با اعمال کشش و بدست آوردن سختي نانومخروط و به کمک تئوري الاستيسبته، مدول يانگ محاسبه شده است. نتايج نشان داد در يک نانومخروط با طول ثابت، مدول با افزايش قطر افزايش مي يابد، درحالي که با افزايش زاويه راس مخروط مقدار مدول کاهش مي يابد. همچنين مدول يانگ نانومخروط دولايه کربني بدست آمده بين مقادير مدول لايه هاي آن قرار دارد. علاوه براين، اثر خرابي و موقعيت آن در مقدار مدول يانگ بررسی شده است.
|
|
References
1. Wei, J., Liew, K.M. and He, X.,
"Mechanical properties of carbon nanocones", Applied Physics Letters, Vol. 91, No. 26, (2007), 261-270.
2. Berber,
B. and Kwon, Y.K.a.T., D.,, "Electronic and structural properties of
carbon nanocones", Physical Review B, Vol. 62, (2000), 2291-2294.
3. Yang,
N., Zhang, G. and Li, B., "Carbon nanocone: A promising thermal
rectifier", Applied Physics Letters,
Vol. 93, No. 24, (2008), 243-111.
4. Afzali,
J. and Alemipour, Z., and Hesam, M.,, "High resolution image with multi
wall carbon nanotube atomic force microscopy tip", International Journal of
Engineering, Vol. 26, (2013),
671-676.
5. Chen,
I.-C., Chen, L.-H., Ye, X.-R., Daraio, C., Jin, S., Orme, C.A., Quist, A. and
Lal, R., "Extremely sharp carbon nanocone probes for atomic force
microscopy imaging", Applied Physics Letters, Vol. 88, No. 15, (2006), 153-160.
6. Chen,
I.-C., Chen, L.-H., Gapin, A., Jin, S., Yuan, L. and Liou, S.-H.,
"Iron–platinum-coated carbon nanocone probes on tipless cantilevers for
high resolution magnetic force imaging", Nanotechnology, Vol. 19, No. 7, (2008),75-100.
7. Hsieh,
J.-Y., Chen, C., Chen, J.-L., Chen, C.-I. and Hwang, C.-C., "The
nanoindentation of a copper substrate by single-walled carbon nanocone tips: A
molecular dynamics study", Nanotechnology, Vol. 20, No. 9, (2009), 96-105.
8. Yu,
S.-S. and Zheng, W.-T., "Effect of n/b doping on the electronic and field
emission properties for carbon nanotubes, carbon nanocones, and graphene
nanoribbons", Nanoscale, Vol. 2, No.
7, (2010), 1069-1082.
9. Ge, M. and Sattler, K., "Observation
of fullerene cones", Chemical Physics Letters, Vol. 220, No. 3, (1994), 192-196.
10. Fereidoon, A., Mottahedin, L. and Latibari, S.T.,
"Investigation of fracture toughness parameters of epoxy nanocomposites
for different crack angles", (2012).
11. Chaboki Khiabani, A., Sadrnejad, S. and
Yahyaeii, M., "Stress transfer modeling in cnt reinforced composites using
continuum mechanics", Vol., (2008).
12. Tsai, P.-C. and Fang, T.-H., "A
molecular dynamics study of the nucleation, thermal stability and nanomechanics
of carbon nanocones", Nanotechnology, Vol. 18, No. 10, (2007), 105-110.
13. Liew, K., Wei, J. and He, X., "Carbon
nanocones under compression: Buckling and post-buckling behaviors", Physical
Review B, Vol. 75, No. 19,
(2007),195-204
14. Liao, M.-L., Cheng, C.-H. and Lin, Y.-P.,
"Tensile and compressive behaviors of open-tip carbon nanocones under
axial strains", Journal of Materials Research, Vol. 26, No. 13, (2011), 1577-1584.
15. Kumar, D., Verma, V., Bhatti, H. and
Dharamvir, K., "Elastic moduli of carbon nanohorns", Journal
of Nanomaterials, Vol. 2011,
(2011), 13-20
16. Firouz-Abadi, R., Fotouhi, M. and Haddadpour,
H., "Free vibration analysis of nanocones using a nonlocal continuum
model", Physics Letters A, Vol.
375, No. 41, (2011), 3593-3598.
17. Seyyed Fakhrabadi, M.M., Khani, N. and
Pedrammehr, S., "Vibrational analysis of single-walled carbon nanocones
using molecular mechanics approach", Physica E: Low-dimensional Systems and
Nanostructures, Vol. 44, No. 7,
(2012), 1162-1168.
18. Chang, T. and Gao, H., "Size-dependent
elastic properties of a single-walled carbon nanotube via a molecular mechanics
model", Journal of the Mechanics and Physics of Solids, Vol. 51, No. 6, (2003), 1059-1074.
19. Nasdala, L. and Ernst, G., "Development
of a 4-node finite element for the computation of nano-structured
materials", Computational materials science, Vol. 33, No. 4, (2005), 443-458.
20. Leung, A., Guo, X., He, X. and Kitipornchai,
S., "A continuum model for zigzag single-walled carbon nanotubes", Applied
Physics Letters, Vol. 86, No. 8,
(2005), 83-110
21. Nahas, M.N. and Abd-Rabou, M., "Finite
element modeling of carbon nanotubes", Submitted to Computational
Materials Science, (2010).
22. Rafiee, R. H., M., , "Young’s modulus prediction
of carbon nanotubes using full nonlinear interatomic potentials", 16th
International Confference on Composite Structures, Porto, ( 2011).
23. Terrones, H., Hayashi, T., Munoz-Navia, M.,
Terrones, M., Kim, Y., Grobert, N., Kamalakaran, R., Dorantes-Davila, J.,
Escudero, R. and Dresselhaus, M., "Graphitic cones in palladium catalysed
carbon nanofibres", Chemical physics letters, Vol. 343, No. 3, (2001), 241-250.
24. Tsakadze, Z., Levchenko, I., Ostrikov, K. and
Xu, S., "Plasma-assisted self-organized growth of uniform carbon nanocone
arrays", Carbon, Vol. 45, No. 10,
(2007), 2022-2030.
25. Ansari, R., Alisafaei, F., Alipour, A. and
Mahmoudinezhad, E., "On the van der waals interaction of carbon
nanocones", Journal of Physics and Chemistry of Solids, Vol. 73, No. 6, (2012), 751-756.
26. Belytschko, T., Xiao, S., Schatz, G. and
Ruoff, R., "Atomistic simulations of nanotube fracture", Physical
Review B, Vol. 65, No. 23,
(2002),235-250
27. Denn, M.M., "Optimization by variational
methods", (1969).
28. Li, C. and Chou, T.-W., "A structural
mechanics approach for the analysis of carbon nanotubes", International
Journal of Solids and Structures,
Vol. 40, No. 10, (2003), 2487-2499.
29. Lei, X., Natsuki, T., Shi, J. and Ni, Q.-Q.,
"Analysis of carbon nanotubes on the mechanical properties at atomic
scale", Journal of Nanomaterials,
Vol. 2011, (2011), 1-10
30. Parvaneh, V. and Shariati, M., "Effect
of defects and loading on prediction of young’s modulus of swcnts", Acta
Mechanica, Vol. 216, No. 1-4,
(2011), 281-289.
31. Sadrnejad, S.A. and Chaboki, A.a.Y., M.,,
"Inelastic continuum modeling of carbon nanotubes behavior using finite
element method", International Journal of Engineering Transactions A, Vol. 20, (2007), 129-135.
|
|
|
|
|