Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 9 (September 2014) 1467-1474    Article Under Proof

downloaded Downloaded: 323   viewed Viewed: 2185

  YOUNG S MODULUS OF SINGLE AND DOUBLE WALLED CARBON NANOCONES USING FINITE ELEMENT METHOD(TECHNICAL NOTE)
 
M. Mohammadian and A. Fereidoon
 
( Received: November 08, 2013 – Accepted: May 22, 2014 )
 
 

Abstract    In this paper a three-dimensional finite element (FE) model of carbon nanocones (CNCs) is proposed and used for obtaining Young\\\'s modulus of CNCs. In this model, stretching and bending forces between carbon atoms are simulated using truss elements in ANSYS software. Then the model is subjected to the tension and by obtaining the stiffness of the CNC and using elasticity theory, Young’s modulus is calculated. The results showed that for a fixed length of CNC, the modulus increase with the increase in diameter whereas it decreases by increasing the apex angle. Also, Young’s modulus of double walled carbon nanocoes (DWCNCs) obtained between the values of each layer. Furthermore, it is showed that elastic modulus can be effected by defects and their positions in CNC.

 

Keywords    Carbon nanocones, Truss model, LINK8 element, ANSYS

 

چکیده    در اين مقاله يک مدل المان محدود سه بعدي از نانومخروط هاي کربني ارائه شده و از آن جهت بدست آوردن مدول يانگ نانومخروط کربني تک لايه و دولايه استفاده گرديده است. در اين مدل نيروهاي کششي و خمشي بين اتم هاي کربن با استفاده از المان هاي خرپا در نرم افزار انسيس شبيه سازي شده و سپس با اعمال کشش و بدست آوردن سختي نانومخروط و به کمک تئوري الاستيسبته، مدول يانگ محاسبه شده است. نتايج نشان داد در يک نانومخروط با طول ثابت، مدول با افزايش قطر افزايش مي يابد، درحالي که با افزايش زاويه راس مخروط مقدار مدول کاهش مي يابد. همچنين مدول يانگ نانومخروط دولايه کربني بدست آمده بين مقادير مدول لايه هاي آن قرار دارد. علاوه براين، اثر خرابي و موقعيت آن در مقدار مدول يانگ بررسی شده است.

References   

 

1.     Wei, J., Liew, K.M. and He, X., "Mechanical properties of carbon nanocones", Applied Physics Letters,  Vol. 91, No. 26, (2007), 261-270.

2.     Berber, B. and Kwon, Y.K.a.T., D.,, "Electronic and structural properties of carbon nanocones", Physical Review B,  Vol. 62, (2000), 2291-2294.

3.     Yang, N., Zhang, G. and Li, B., "Carbon nanocone: A promising thermal rectifier", Applied Physics Letters,  Vol. 93, No. 24, (2008), 243-111.

4.     Afzali, J. and Alemipour, Z., and Hesam, M.,, "High resolution image with multi wall carbon nanotube atomic force microscopy tip", International Journal of Engineering,  Vol. 26, (2013), 671-676.

5.     Chen, I.-C., Chen, L.-H., Ye, X.-R., Daraio, C., Jin, S., Orme, C.A., Quist, A. and Lal, R., "Extremely sharp carbon nanocone probes for atomic force microscopy imaging", Applied Physics Letters,  Vol. 88, No. 15, (2006), 153-160.

6.     Chen, I.-C., Chen, L.-H., Gapin, A., Jin, S., Yuan, L. and Liou, S.-H., "Iron–platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging", Nanotechnology,  Vol. 19, No. 7, (2008),75-100.

7.     Hsieh, J.-Y., Chen, C., Chen, J.-L., Chen, C.-I. and Hwang, C.-C., "The nanoindentation of a copper substrate by single-walled carbon nanocone tips: A molecular dynamics study", Nanotechnology,  Vol. 20, No. 9, (2009), 96-105.

8.     Yu, S.-S. and Zheng, W.-T., "Effect of n/b doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons", Nanoscale,  Vol. 2, No. 7, (2010), 1069-1082.

9.     Ge, M. and Sattler, K., "Observation of fullerene cones", Chemical Physics Letters,  Vol. 220, No. 3, (1994), 192-196.

10.   Fereidoon, A., Mottahedin, L. and Latibari, S.T., "Investigation of fracture toughness parameters of epoxy nanocomposites for different crack angles", (2012).

11.   Chaboki Khiabani, A., Sadrnejad, S. and Yahyaeii, M., "Stress transfer modeling in cnt reinforced composites using continuum mechanics",  Vol., (2008).

12.   Tsai, P.-C. and Fang, T.-H., "A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones", Nanotechnology,  Vol. 18, No. 10, (2007), 105-110.

13.   Liew, K., Wei, J. and He, X., "Carbon nanocones under compression: Buckling and post-buckling behaviors", Physical Review B,  Vol. 75, No. 19, (2007),195-204

14.   Liao, M.-L., Cheng, C.-H. and Lin, Y.-P., "Tensile and compressive behaviors of open-tip carbon nanocones under axial strains", Journal of Materials Research,  Vol. 26, No. 13, (2011), 1577-1584.

15.   Kumar, D., Verma, V., Bhatti, H. and Dharamvir, K., "Elastic moduli of carbon nanohorns", Journal of Nanomaterials,  Vol. 2011, (2011), 13-20

16.   Firouz-Abadi, R., Fotouhi, M. and Haddadpour, H., "Free vibration analysis of nanocones using a nonlocal continuum model", Physics Letters A,  Vol. 375, No. 41, (2011), 3593-3598.

17.   Seyyed Fakhrabadi, M.M., Khani, N. and Pedrammehr, S., "Vibrational analysis of single-walled carbon nanocones using molecular mechanics approach", Physica E: Low-dimensional Systems and Nanostructures,  Vol. 44, No. 7, (2012), 1162-1168.

18.   Chang, T. and Gao, H., "Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model", Journal of the Mechanics and Physics of Solids,  Vol. 51, No. 6, (2003), 1059-1074.

19.   Nasdala, L. and Ernst, G., "Development of a 4-node finite element for the computation of nano-structured materials", Computational materials science,  Vol. 33, No. 4, (2005), 443-458.

20.   Leung, A., Guo, X., He, X. and Kitipornchai, S., "A continuum model for zigzag single-walled carbon nanotubes", Applied Physics Letters,  Vol. 86, No. 8, (2005), 83-110

21.   Nahas, M.N. and Abd-Rabou, M., "Finite element modeling of carbon nanotubes", Submitted to Computational Materials Science,  (2010).

22.   Rafiee, R. H., M., , "Young’s modulus prediction of carbon nanotubes using full nonlinear interatomic potentials", 16th International Confference on Composite Structures, Porto,  ( 2011).

23.   Terrones, H., Hayashi, T., Munoz-Navia, M., Terrones, M., Kim, Y., Grobert, N., Kamalakaran, R., Dorantes-Davila, J., Escudero, R. and Dresselhaus, M., "Graphitic cones in palladium catalysed carbon nanofibres", Chemical physics letters,  Vol. 343, No. 3, (2001), 241-250.

24.   Tsakadze, Z., Levchenko, I., Ostrikov, K. and Xu, S., "Plasma-assisted self-organized growth of uniform carbon nanocone arrays", Carbon,  Vol. 45, No. 10, (2007), 2022-2030.

25.   Ansari, R., Alisafaei, F., Alipour, A. and Mahmoudinezhad, E., "On the van der waals interaction of carbon nanocones", Journal of Physics and Chemistry of Solids,  Vol. 73, No. 6, (2012), 751-756.

26.   Belytschko, T., Xiao, S., Schatz, G. and Ruoff, R., "Atomistic simulations of nanotube fracture", Physical Review B,  Vol. 65, No. 23, (2002),235-250

27.   Denn, M.M., "Optimization by variational methods", (1969).

28.   Li, C. and Chou, T.-W., "A structural mechanics approach for the analysis of carbon nanotubes", International Journal of Solids and Structures,  Vol. 40, No. 10, (2003), 2487-2499.

29.   Lei, X., Natsuki, T., Shi, J. and Ni, Q.-Q., "Analysis of carbon nanotubes on the mechanical properties at atomic scale", Journal of Nanomaterials,  Vol. 2011, (2011), 1-10

30.   Parvaneh, V. and Shariati, M., "Effect of defects and loading on prediction of young’s modulus of swcnts", Acta Mechanica,  Vol. 216, No. 1-4, (2011), 281-289.

31.   Sadrnejad, S.A. and Chaboki, A.a.Y., M.,, "Inelastic continuum modeling of carbon nanotubes behavior using finite element method", International Journal of  Engineering Transactions A,  Vol. 20, (2007), 129-135.

 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir