IJE TRANSACTIONS A: Basics Vol. 28, No. 10 (October 2015) 1401-1407   

downloaded Downloaded: 193   viewed Viewed: 2097

M. Hosseingholi, A. Hosseinnia and M. Pazouki
( Received: September 26, 2015 – Accepted: October 16, 2015 )

Abstract    We report the synthesis of nitrogen-doped urchin-like rutile TiO2 nanostructure at room temperature without further heat treatment. The process was operated through hydrolysis of Ti(OC4H9)4 employing the direct amination of the product. The samples characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy and Brunauer- Emmett- Teller (BET) for determination of surface area. Photocatalytic activity of the product was evaluated by degradation of Methylene blue under sunlight. This analysis demonstrated that obtained titanium oxide has an urchin- like form with rutile structure and high surface area is due to formation of nanospicules on the surface. N–TiO2 exhibited excellent photocatalytic activity under sunlight due to their high surface area (148 m2 g-1) and the new absorption band in the visible region caused by nitrogen doping.


Keywords    Rutile TiO2, Nanostructure, Nitrogen- doped, Room temperature, Photocatalytic activity


چکیده    نانوساختار دی اکسید تیتانیوم آلاییده شده با نیتروژن با ساختار جوجه تیغی شکل در دمای اتاق بدون هیچگونه عملیات حرارتی سنتز شده است. این نانوساختار از طریق آمیناسیون مستقیم تترابوتیل اورتو تیتانات تهیه شده که با پراش اشعه ایکس (XRD)، میکروسکوپ الکترونی روبشی (SEM)، میکروسکوپ الکترونی عبوری (TEM)، طیف سنجی رامان و BET (جهت اندازه گیری سطح ویژه) تعیین مشخصات گردید. فعالیت فوتوکاتالیستی محصول نیز از طریق تجزیه متیلن بلو زیر نور خورشید ارزیابی شد. این بررسی‏ها نشان داد که اکسید تیتانیوم بدست آمده دارای ساختار کریستالی روتایل بوده که به شکل جوجه تیغی رشد کرده اند و تشکیل نانوسیخکها در سطح سبب افزایش سطح ویژه در نمونه شده است. N–TiO2 خاصیت فوتوکالیستی بسیار خوبی در زیر نور خورشید از خود نشان می‏دهد که این به دلیل مساحت سطح ویژه بالا (148 m2 g-1) و باند جذبی جدیدی است که در محدوده نور مرئی به دلیل وجود نیتروژن ایجاد شده است.


1.     Whitesides, G. M. and Grzybowski B., Sci, "Self-Assembly at All Scales", Vol. 295, (2002), 2418-2421.

2.     Naficy, S., Jalili, R., Aboutalebi, S. H., Gorkin Iii, R. A., Konstantinov, K., Innis, P. C., Spinks, G. M., Poulin, P. and Wallace, G. G.,"Graphene oxide dispersions: uning rheology to enable fabrication" Materials Horizons, Vol. 1, (2014), 326-331.

3.     Harada, A., Kobayashi, R., Takashima, Y., Hashidzume, A., and Yamaguchi, H., "Macroscopic self-assembly through molecular recognition" Nat Chem, Vol. 3, (2011), 34-37.

4.     Mershin, A., Matsumoto, K., Kaiser, L., Yu, D., Vaughn, M., Nazeeruddin, M. K., Bruce, B. D., Graetzel, M. and Zhang, S., "Self-assembled photosystem-I biophotovoltaics on nanostructured TiO2 and ZnO.", Sci. Rep., Vol. 2, (2012), 1-7.

5.     Jalili, R., Aboutalebi, S. H., Esrafilzadeh, D., Konstantinov, K., Razal, J. M., Moulton, S. E. and Wallace, G. G., "Formation and processability of liquid crystalline dispersions of graphene oxide", Materials Horizons, Vol. 1, (2014), 87-91.

6.     Wheeler, D. A., Ling, Y., Dillon, R. J., Fitzmorris, R. C., Dudzik, C. G., Zavodivker, L., Rajh, T., Dimitrijevic, N. M., Millhauser, G., Bardeen, C., Li, Y., and Zhang, J. Z., " Probing the Nature of Bandgap States in Hydrogen-Treated TiO2 Nanowires" J. Phys. Chem. C, Vol. 117, (2013), 26821-26830.

7.     Naldoni, A., Allieta, M., Santangelo, S., Marelli, M., Fabbri, F., Cappelli, S., Bianchi, C. L., Psaro, R. and Dal Santo, V., "Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles", J. Am. Chem. Soc., Vol. 134, (2012), 7600-7603.

8.     Scanlon, D. O., Dunnill, C. W., Buckeridge, J., Shevlin, S. A., Logsdail, A. J., Woodley, S. M., Catlow, C. R. A., Powell, M. J., Palgrave, R. G., Parkin, I. P., Watson, G. W., Keal, T. W., Sherwood, P., Walsh, A. and Sokol, A. A., "Band alignment of rutile and anatase TiO", Nat Mater, Vol. 12, (2013), 798-801.

9.     Gong, X.-Q., Selloni, A., Batzill, M. and Diebold, U., "Steps on anatase TiO2(101)", Nat Mater, Vol. 5, (2006), 665-670.

10.   Tao, J., Luttrell, T. and Batzill, M., "A two-dimensional phase of TiO with a reduced bandgap", Nat Chem, Vol. 3, (2011), 296-300.

11.   Cheng, C., Amini, A., Zhu, C., Xu, Z., Song, H., and Wang, N., "Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures" Sci. Rep., Vol. 4, (2014), 4181-4185.

12.   Qin, H.-L., Gu, G.-B. and Liu, S., "Preparation of nitrogen-doped titania with visible-light activity and its application", C. R. Chimie, 11, (2008), 95-100.

13.   Choi, J., Park, H. and Hoffmann, M. R., "Effects of single metal-ion doping on the visible-light photoreactivity of TiO2", J. Phys. Chem. C, Vol. 114, (2009), 783-792.

14.   Dong, F., Zhao, W., Wu, Z. and Guo, S. "Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO2 nanoparticles prepared by thermal decomposition", Hazard. Mater., Vol. 162, (2009), 763-770.

15.   Cong, Y., Zhang, J., Chen, F. and Anpo, M., "Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity", J. Phys. Chem. C, Vol. 111, (2007), 6976-6982.

16.   Kuroda, Y., Mori, T., Yagi, K., Makihata, N., Kawahara, Y., Nagao, M. and Kittaka, S., "Preparation of visible-light-responsive TiO2−xNx photocatalyst by a sol–gel method: analysis of the active center on TiO2 that reacts with NH3", Langmuir, Vol. 21, (2005), 8026-8034.

17.   Nosaka, Y., Matsushita, M., Nishino, J. and Nosaka, A. Y., "Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds", Sci.Technol. Adv. Mater., Vol. 6, (2005), 143-148.

18.   Gandhe, A. R. and Fernandes, J. B., "A simple method to synthesize N-doped rutile tiania with enhanced photocatalytic activity in sunlight", J. Solid State Chem., Vol. 178, (2005), 2953-2957.

19.   Yang, S. and Gao, L., "The photocatalytic Activity of Nitrogen Doped Rutile TiO2 Nanoparticles Under Visible Light Irradiation", Mater. Res. Bull., Vol. 43, (2008), 1872-1876.

20.   Livraghi, S., Czoska, A. M., Paganini, M. C. and Giamello, E., "Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile)", J. Solid State Chem., Vol. 182, (2009), 160-164.

21.   Hosseingholi, M., Pazouki, M., Hosseinnia, A. and Aboutalebi, S., "Room temperature synthesis of nanocrystalline anatase sols and preparation of uniform nanostructured TiO2 thin films: optical and structural properties", J. Phys. D: Appl. Phys., Vol. 44, (2011), 1-8.

22.   Lai, Z., Peng, F., Wang, H., Yu, H., Zhang, S. and Zhao, H., "A new insight into regulating high energy facets of rutile TiO2", J. Mater. Chem. A, Vol. 1, (2013), 4182-4185.

23.   Yella, A., Heiniger, L.-P., Gao, P., Nazeeruddin, M. K. and Grätzel, M., "Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency", Nano Lett., Vol. 14, (2014), 2591-2596.

24.   Gopal, M., Moberly Chan, W. J. and De Jonghe, L. C., "Room temperature synthesis of crystaline metal oxide", J. Mater. Sci., 32, (1997), 6001- 6008.

25.   Sun, J., Qiao, L., Sun, S. and Wang, G., "Photocatalytic degradation of orange G on nitrogen-doped TiO2 catalysts under visible light and sunlight irradiation", J. Hazard. Mater., Vol. 155, (2008), 312-319.

26.   Salari, M., Konstantinov, K. and Liu, H. K., "Enhancement of the capacitance in TiO2 nanotubes through controlled introduction of oxygen vacancies", J. Mater. Chem., Vol. 21, (2011), 5128-5133.

27.   Salari, M., Aboutalebi, S. H., Chidembo, A. T., Nevirkovets, I. P., Konstantinov, K. and Liu, H. K., "Enhancement of the electrochemical capacitance of TiO2 nanotube arrays through controlled phase transformation of anatase to rutile", PCCP, Vol. 14, (2012), 4770-4779.

28.   Rezaee, M., Mousavi Khoie, S. M. and Liu, K. H., "The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: an XRD and Raman spectroscopy investigation", CrystEngComm, Vol. 13, (2011), 5055-5061.

29.   Li, J.-G., Ishigaki, T. and Sun, X., "Anatase, Brookite, and Rutile Nanocrystals via Redox Reactions under Mild Hydrothermal Conditions:  Phase-Selective Synthesis and Physicochemical Properties", J. Phys. Chem. C, 111, (2007), 4969-4976.

30.   Andersson, M., Kiselev, A., sterlund, L. O. and Palmqvist, A. E. C., "Microemulsion-Mediated Room-Temperature Synthesis of High-Surface-Area Rutile and Its Photocatalytic Performance", J. phys. Chem. C, Vol. 111, (2007), 6789-6797.

31.   Chu, R., Yan, J., Lian, S., Wang, Y., Yan, F. and Chen, D., "Shape-controlled synthesis of nanocrystalline titania at low temperature", Solid State Commun., Vol. 130, (2004), 789-792.

32.   Testino, A., Bellobono, I. R., Buscaglia, V., Canevali, C., D'Arienzo, M., Polizzi, S., Scotti, R. and Morazzoni, F., "Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach", J. Am. Chem. Soc., Vol. 129, No. 12, (2007), 3564-3575.

33.   Abazovic´, N. D. , Cˇomor, M. I. , Zec, S., Nedeljkovic, J. M., Piscopiello, E., Montone, A. and Antisari, M. V., "Structural and optical characterization of flower – like rutile nanostructures doped with Fe3+", J. Am. Chem. Soc., Vol. 92, (2009), 894-896.

34.   Penn, R. L. and Banfield, J. F.,"Imperfect oriented attachment: dislocation generation in defect-free nanocrystals", science, Vol. 281 (5379), 1998, 969-971.

35.   Lindgren, T., Mwabora, J. M., Avendaño, E., Jonsson, J., Hoel, A., Granqvist, C.-G. and Lindquist, S.-E.,"Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering", J. Phys. Chem. B, Vol. 107, No. 24, (2003), 5709-5716.

36.   Sun, H., Bai, Y., Jin, W. and Xu, N."Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species", Sol. Energ. Mate. Sol. C., Vol. 92, No. 1, (2008), 76-83.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir