Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 10 (October 2015) 1430-1438   

downloaded Downloaded: 98   viewed Viewed: 1759

  QUASI RANDOM DEPLOYMENT STRATEGY FOR RELIABLE COMMUNICATION BACKBONES IN WIRELESS SENSOR NETWORKS
 
I. Snigdh and N. Gupta
 
( Received: November 11, 2014 – Accepted: October 16, 2015 )
 
 

Abstract    Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertaken by the message, subject to the place of event, remains unattended. To address this problem, we employ communication backbones (Prim’s algorithm and breadth first search (BFS)) and compute reliability based on the availability of paths for consistent message delivery from the place of event to the sink location in event driven wireless sensor networks. Our article analyses the communication reliability of a wireless sensor network in context to a topology governed by random and deterministic deployment methods. To comprehend the effect of topology on the communication reliability of a wireless network; “the within communication radii” constraint is satisfied. ANOVA is performed to validate the effect of node placement schemes on the reliability subject to varying radio ranges. It is observed that a ‘quasi’ random placement of nodes increases the communication reliability of the existing algorithms employed for analysis.

 

Keywords    Wireless Sensor Network, Minimum Spanning Tree, Quasi-random sequences, Reliability, Backbone networks, ANOVA

 

چکیده    ساخت و تعمیر و نگهداری توپولوژی زیر مشکلات قابل توجه کنترل توپولوژی هستند. الگوریتم­های چرخشی مبتنی بر درخت برای کنترل توپولوژی اصولاً بر اساس الگوریتم های ساخت و ساز گستره­ی انتقال هستند. البته، ساخت ستون مرکزی موثر به طور غیر مستقیم به استقرار گره­ها مرتبط است. همچنین، به وابستگی قابلیت اطمینان شبکه به مسیر مخابره­ی پیام با توجه به محل رویداد توجه نمی­شود. برای حل این مشکل، ما از ستون مرکزی ارتباطات (الگوریتم پریم و وسعت جستجو برای اولین بار (BFS)) استفاده کرده و قابلیت اطمینان را بر اساس در دسترس بودن مسیر برای تحویل پیام سازگار از محل رویداد به محل در شبکه­های حسگر بی سیم محاسبه می­کنیم. در این مقاله، ما قابلیت اطمینان ارتباطات را از شبکه­های حسگر بی سیم در زمینه به یک توپولوژی اداره شده با روش های استقرار تصادفی و قطعی محاسبه می­کنیم. برای درک اثر توپولوژی بر روی قابلیت اطمینان ارتباطات از یک شبکه بی سیم؛ "در داخل شعاع­های ارتباطات" محدودیت ارضاء می­کنیم. است برای اعتبارسنجی اثر روش_های استقرار گره­ها بر قابلیت اطمینان برای متغیرها در محدوده­ی رادیویی از تحلیل ANOVA استفاده می­کنیم. مشاهده شده است که استقرار شبه تصادفی گره­ها قابلیت اطمینان الگوریتم های موجود برای کار تحلیل ارتباطات را افزایش می­دهد.

References   

1.     Lewis, F.L., "Wireless sensor networks", Smart Environments: Technologies, Protocols, and Applications,  (2004), 11-46.

2.     Dulman, S., Rossi, M., Havinga, P. and Zorzi, M., "On the hop count statistics for randomly deployed wireless sensor networks", International Journal of Sensor Networks,  Vol. 1, No. 1-2, (2006), 89-102.

3.     Wategaonkar, D.N. and Deshpande, V.S., "Characterization of reliability in wsn", in Information and Communication Technologies (WICT), World Congress on, IEEE., (2012), 970-975.

4.     Pouyan, A. and Tabari, M.Y., "Estimating reliability in mobile ad-hoc  networks  based  on  monte  carlo  simulation  (technical

 

 

 

 

 

 

 

 

 

note)", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 5, (2014), 739.

5.     Bhardwaj, D., Jain, S. and Singh, M.P., "Estimation of network reliability for a fully connected network with unreliable nodes and unreliable edges using neuro optimization", International Journal of Engineering-Transactions A: Basics,  Vol. 22, No. 4, (2009), 317.

6.     Esseghir, M. and Perros, H., "Optimizing the wireless sensor network lifetime under reliability constraint", in Wireless Days,. WD'08. 1st IFIP, IEEE., (2008), 1-5.

7.     Xu, W., Shi, Q., Wei, X. and Wang, Y., "Distributed optimal rate-reliability-lifetime tradeoff in wireless sensor networks", arXiv preprint arXiv:1303.3624,  ., (2013).

8.     Tufail, A., Khayam, S.A., Ali, A., Baig, W.A., Anwar, F.M., Kim, K.-H. and Yoo, S.-W., "On the reliability of backbone-assisted end-to-end transmissions in wsns", in Ubiquitous and Future Networks,. ICUFN. First International Conference on, IEEE., (2009), 22-27.

9.     Valinataj, M., "Reliability and performance evaluation of fault-aware routing methods for network-on-chip architectures (research note)", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 4, (2013), 509-518.

10.   Balister, P. and Kumar, S., "Random vs. Deterministic deployment of sensors in the presence of failures and placement errors", in INFOCOM, IEEE., (2009), 2896-2900.

11.   Mishra, A. and Jain, M., "Availability of k-out-of-n: F secondary subsystem with general repair time distribution", International Journal of Engineering-Transactions A: Basics,  Vol. 26, No. 7, (2013), 743-752.

12.   Wu, L., Yi, L., Xue-qin, G. and Deng-hai, W., "Monte-carlo simulation for the reliability analysis of multi-status network system based on breadth first search", in Information and Computing Science,. ICIC'09. Second International Conference on, IEEE. Vol. 3, (2009), 280-283.

13.   Taghizadeh, S. and Mohammadi, S., "Lebrp-a lightweight and energy balancing routing protocol for energy-constrained wireless ad hoc networks", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 1, (2013), 33-45.

14.   Chakrabarty, K., Iyengar, S.S., Qi, H. and Cho, E., "Grid coverage for surveillance and target location in distributed sensor networks", Computers, IEEE Transactions on,  Vol. 51, No. 12, (2002), 1448-1453.

15.   Zonouz, A.E., Xing, L., Vokkarane, V.M. and Sun, Y., "Application communication reliability of wireless sensor networks supporting k-coverage", in Distributed Computing in Sensor Systems (DCOSS), IEEE International Conference on, IEEE., (2013), 430-435.

16.   Simulator, Q.N., "Scalable network technologies", Inc.[Online]. Available: www. qualnet. com,  , (2011).

17.   Kim, J. and Lee, J.-H., "Vitamin: A virtual backbone tree algorithm for minimal energy consumption in wireless sensor network routing", in Information Networking (ICOIN), International Conference on, IEEE., (2012), 144-149.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir