Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 10 (October 2015) 1486-1492   

downloaded Downloaded: 106   viewed Viewed: 1912

  RELIABILITY MEASURES MEASUREMENT UNDER RULE-BASED FUZZY LOGIC TECHNIQUE
 
M. Ram and R. Chandna
 
( Received: December 23, 2014 – Accepted: October 16, 2015 )
 
 

Abstract    In reliability theory, the reliability measures contend the very important and depreciative role for any system analysis. Measurement of reliability measures is not easy due to ambiguity and vagueness which exist within reliability parameters. It is also very difficult to incorporate a large amount of uncertainty in well-established methodologies and techniques. However, fuzzy logic provides an effective tool for extraction of precise conclusions based on vague and imprecise data and human perceptions. This paper suggests a rule based fuzzy logic approach for measuring reliability measures.

 

Keywords    Reliability parameters, Fuzzy logic, Rule based fuzzy model.

 

چکیده    در تئوری قابلیت اطمینان، تمهیدات مربوط به حفظ اطمینان بسیار مهم است و نقش تعیین کننده برای تحلیل سیستم دارد. اندازه گیری اقدامات قابلیت اطمینان به خاطر ابهام و عدم صراحت در پارامترها آسان نیست. گنجاندن مقدار زیادی ترکیب از عدم قطعیت در روش­های به خوبی تثبیت شده نیز بسیار دشوار است. البته، منطق فازی یک ابزار موثر برای استخراج نتایج دقیق بر اساس داده­های مبهم و نادقیق و درک انسانی فراهم می­کند . در این مقاله یک رویکرد منطق فازی قانون­مند برای اندازه گیری میزان قابلیت اطمینان ارائه شده است.

References   

 

1.     Zadeh, L.A., "The concept of a linguistic variable and its application to approximate reasoning—i", Information Sciences,  Vol. 8, No. 3, (1975), 199-249.

2.     Ross, T.J., "Fuzzy logic with engineering applications, John Wiley & Sons, (2009).

3.     Kahraman, C., "Fuzzy applications in industrial engineering, Springer,  Vol. 201,  (2006).

4.     Kai-Yuan, C., Chuan-Yuan, W. and Ming-Lian, Z., "Fuzzy reliability modeling of gracefully degradable computing systems", Reliability Engineering & System Safety,  Vol. 33, No. 1, (1991), 141-157.

5.     Cheng, C.-H. and Mon, D.-L., "Fuzzy system reliability analysis by interval of confidence", Fuzzy Sets and Systems,  Vol. 56, No. 1, (1993), 29-35.

6.     Utkin, L.V., "Fuzzy reliability of repairable systems in the possibility context", Microelectronics Reliability,  Vol. 34, No. 12, (1994), 1865-1876.

7.     Utkin, L., "Knowledge based fuzzy reliability assessment", Microelectronics Reliability,  Vol. 34, No. 5, (1994), 863-874.

8.     Ramachandran, V., Sankaranarayanan, V. and Seshasayee, S., "Fuzzy reliability modelling—linguistic approach", Microelectronics Reliability,  Vol. 32, No. 9, (1992), 1311-1318.

9.     Kumar, A. and Lata, S., "Reliability evaluation of condensate system using fuzzy markov model", Ann Fuzzy Math Inform,  Vol. 4, No. 2, (2012), 281-291.

10.   Tu, J., Cheng, R. and TAo, Q., "Reliability analysis method of safety-critical avionics system based on dynamic fault tree under fuzzy uncertainty", Eksploatacja i Niezawodność,  Vol. 17, No. 1, (2015),156-163.

 11.   Chandna, R. and Ram, M., "Fuzzy reliability modeling in the system failure rates merit context", International Journal of System Assurance Engineering and Management,  Vol. 5, No. 3, (2014), 245-251.

12.   Chandna, R. and Ram, M., “Fuzzy reliability modeling in the system failure rates merit context”, International Journal of System Assurance Engineering and Management, Vol.5, No.3, (2013), 245-251.

13.   De-zi, Z. and Na, C., "Aeroengine reliability prediction based on fuzzy and interval number", Procedia Engineering,  Vol. 99, No., (2015), 1284-1288.

14.   Tyagi, S.K., "Reliability analysis of a powerloom plant using interval valued intuitionistic fuzzy sets", Applied Mathematics,  Vol. 5, No. 13, (2014), 2008-2015.

15.   Gao, P. and Xie, L., "Fuzzy dynamic reliability models of parallel mechanical systems considering strength degradation path dependence and failure dependence", Mathematical Problems in Engineering,  Vol. 2015, No., (2015),1-9.

16.   Tsourveloudis, N.C. and Phillis, Y.A., "Manufacturing flexibility measurement: A fuzzy logic framework", Robotics and Automation, IEEE Transactions on,  Vol. 14, No. 4, (1998), 513-524.

17.   Das, A. and Caprihan, R., "A rule-based fuzzy-logic approach for the measurement of manufacturing flexibility", The International Journal of Advanced Manufacturing Technology,  Vol. 38, No. 11-12, (2008), 1098-1113.

18.   Park, J. and Han, S.H., "A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design", International Journal of Industrial Ergonomics,  Vol. 34, No. 1, (2004), 31-47.

19.   Ohdar, R. and Ray, P.K., "Performance measurement and evaluation of suppliers in supply chain: An evolutionary fuzzy-based approach", Journal of Manufacturing Technology Management,  Vol. 15, No. 8, (2004), 723-734.

20.   Lau, H., Kai Pang, W. and Wong, C.W., "Methodology for monitoring supply chain performance: A fuzzy logic approach", Logistics Information Management,  Vol. 15, No. 4, (2002), 271-280.

21.   Singh, S., Ram, M. and Chaube, S., "Analysis of the reliability of a three-component", International Journal of Engineering,  Vol. 24, No. 4, (2011), 395-401.

22.   Zimmermann, H.-J. and Zysno, P., "Latent connectives in human decision making", Fuzzy Sets and Systems,  Vol. 4, No. 1, (1980), 37-51.

23.   Klir, G. J., and Yuan, B., “Fuzzy Sets and Fuzzy Logic: Theory and Applications”, Possibility Theory versus Probability Theory, Prentice Hall, (2005).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir