IJE TRANSACTIONS A: Basics Vol. 28, No. 10 (October 2015) 1515-1524   

downloaded Downloaded: 298   viewed Viewed: 3065

A. Rezaei and M. H. Sadeghi
( Received: June 23, 2015 – Accepted: September 03, 2015 )

Abstract    To reduce the damages of aeolian vibration of conductors to the power transmission networks, the most common method is installation of Stock-bridge dampers. Estimation of the damper’s dissipated energy is an important factor in determining the number and location of installation of these types of vibration absorbers. This estimation is strongly dependent upon the assumed mode shape of the conductor vibration. The results of current study show that the available methods do not provide an accurate answer for energy dissipation of a conductor with more than one damper. This paper provides a comprehensive method for calculating the mode shapes and dissipated energy in which the effects of travelling wave, amplitude and phase variations, boundary conditions as well as the influence of the number, position, and impedance of the dampers on the mode shape are taken into account. Moreover, the frequency bands of high-amplitude vibration potential can be identified without the need to extract the vibration amplitude.


Keywords    Aeolian Vibration, Transmission Line, Stock-bridge Damper, Energy Dissipation


چکیده    برای کاهش خسارات ارتعاشات «آولین» رسانا­های خطوط انتقال برق به شبکه­های انتقال توان الکتریکی، رایج­ترین روش استفاده از میراگر «استاک­بریج» است. برآورد انرژی اتلافی میراگر که فاکتور مهمی در تعیین تعداد و محل نصب میراگرهاست، به شدت به شکل مود فرض شده برای ارتعاش رسانا وابسته است. نتایج تحقیق حاضر نشان می­دهد، روش­های موجود نمی­توانند جواب دقیقی برای انرژی اتلافی رسانای دارای بیش از یک میراگر ارایه دهند. در این تحقیق روش جامعی برای محاسبه­ی شکل مود و انرژی اتلافی میراگرهای متعدد نصب شده روی رسانا ارایه می­شود که اثرات روندگی موج، تغییرات دامنه و فاز، شرایط مرزی دو انتها و همچنین تاثیر تعداد، محل نصب و امپدانس میراگر را در شکل مود ارتعاشی لحاظ می­کند. همچنین با استفاده از این روش، می­توان نواحی فرکانسی با پتانسیل ارتعاش بالا را بدون نیاز به محاسبه دامنه ارتعاش، شناسایی کرد.



1.     Kiessling, F., Nefzger, P., Kaintzyk, U. and Nolasco, J.F., "Overhead power lines: Planning, design, construction, Springer Science & Business Media,  (2003).

2.     Chan, J., Havard, D., Rawlins, C., Diana, G., Cloutier, L., Lilien, J.-L., Hardy, C., Wang, J. and Goel, A., "Epri transmission line reference book: Wind-induced conductor motion",  (2009).

3.     Bayliss, C., Bayliss, C.R. and Hardy, B.J., "Transmission and distribution electrical engineering, Elsevier,  (2012).

4.     und Kern, H., "Wind-induced vibrations on high-voltage overhead lines", Surv. Math. Ind,  Vol. 1, No., (1991), 145.

5.     Emamgholizadeh, M., Gharabaghi, A.M., Abedi, K. and Sedaaghi, M., "Experimental investigation of the effect of splitter plate angle on the under-scouring of submarine pipeline due to steady current and clear water condition", International Journal of Engineering-Transactions C: Aspects,  Vol. 28, No. 3, (2014), 368.

6.     Golafshani, A. and Gholizad, A., "Passive vibration control for fatigue damage mitigation in steel jacket platforms", International Journal of Engineering-Transactions B: Applications,  Vol. 21, No. 4, (2008), 313.

7.     Dulhunty, P., "Vibration dampers on aac and aaac conductors",  Vol., No., (2013).

8.     Varney, T., "Notes on the vibration of transmission-line conductors", AIEE, Journal of the,  Vol. 45, No. 10, (1926), 953-957.

9.     Claren, R. and Diana, G., "Mathematical analysis of transmission line vibration", IEEE Transactions on power apparatus and systems,  Vol. 12, No. PAS-88, (1969), 1741-1771.

10.   Langlois, S. and Legeron, F., "Prediction of aeolian vibration on transmission-line conductors using a nonlinear time history model—part i: Damper model", Power Delivery, IEEE Transactions on,  Vol. 29, No. 3, (2014), 1168-1175.

11.   Godard, B., Guérard, S. and Lilien, J.-L., "Original real-time observations of aeolian vibrations on power-line conductors", IEEE transactions on power delivery,  Vol. 26, No. 4, (2011), 2111-2117.

12.   LI, L., KONG, D.-y., LONG, X.-h. and LIANG, Z.-p., "Analysis of aeolian transmission conductor with dampers by the finite element method [j]", High Voltage Engineering,  Vol. 2, (2008), 026.

13.   Krispin, H., Fuchs, S. and Hagedorn, P., "Optimization of the efficiency of aeolian vibration dampers", in Power Engineering Society Conference and Exposition in Africa, 2007. PowerAfrica'07. IEEE, IEEE., (2007), 1-3.

14.   Dhotarad, M., Ganesan, N. and Rao, B., "Transmission line vibrations", Journal of Sound and Vibration,  Vol. 60, No. 2, (1978), 217-237.

15.   Hagedorn, P., "Ein einfaches rechenmodell zur berechnung winderregter schwingungen an hochspannungsleitungen mit dämpfern", Ingenieur-Archiv,  Vol. 49, No. 3-4, (1980), 161-177.

16.   Hagedorn, P., "On the computation of damped wind-excited vibrations of overhead transmission lines", Journal of Sound and Vibration,  Vol. 83, No. 2, (1982), 253-271.

17.   Wolf, H., Adum, B., Semenski, D. and Pustaić, D., "Using the energy balance method in estimation of overhead transmission line aeolian vibrations", Strojarstvo: časopis za teoriju i praksu u strojarstvu,  Vol. 50, No. 5, (2008), 269-276.

18.   KASAP, H., "Investigation of stockbridge dampers for vibration control of overhead transmission lines", MIDDLE EAST TECHNICAL UNIVERSITY,  (2012),

19.   Sadeghi, M. and Rezaei, A., "Extending energy balance method for calculating cable vibration with arbitrary number of dampers and their optimal placement", Modares Mechanical Engineering,  Vol. 15, No. 8, (2015), 438-448.

20.   Vecchiarelli, J., "Aeolian vibration of a conductor with a stockbridge-type damper",  (1997).

21.   Vecchiarelli, J., Currie, I. and Havard, D., "Computational analysis of aeolian conductor vibration with a stockbridge-type damper", Journal of Fluids and Structures,  Vol. 14, No. 4, (2000), 489-509.

22.   Korayem, M. and Alipour, A., "Dynamic analysis of moving cables with variable tension and variable speed",  (2010).

23.   Langlois, S., Legeron, F. and Levesque, F., "Time history modeling of vibrations on overhead conductors with variable bending stiffness", Power Delivery, IEEE Transactions on,  Vol. 29, No. 2, (2014), 607-614.

24.   Levesque, F., Goudreau, S., Langlois, S. and Legeron, F., "Experimental study of dynamic bending stiffness of acsr overhead conductors".

25.   Braga, G., Nakamura, R. and Furtado, T., "Aeolian vibration of overhead transmission line cables: Endurance limits", in Transmission and Distribution Conference and Exposition: Latin America, 2004 IEEE/PES, IEEE., (2004), 487-492.

26.   Hagedorn, P., "Wind-excited vibrations of transmission lines: A comparison of different mathematical models", Mathematical Modelling,  Vol. 8, (1987), 352-358.

27.   Guérard, S., "Power line conductors, a contribution to the analysis of their dynamic behaviour",  (2011).

28.   ESKANDARI, G.M. and NOURZAD, A., "Wave equations in transversely isotropic media in terms of potential functions",  (2003).

29.   IEEE Standards, "Ieee std. 563- ieee guide on conductor self damping measurements", in IEEE Power & Energy Society, New York, U. S. A., (1978 of Conference).

30.   Noiseux, D., "Similarity laws of the internal damping of stranded cables in transverse vibrations", Power Delivery, IEEE Transactions on,  Vol. 7, No. 3, (1992), 1574-1581.

31.   IEC Standards, "Iec std 61897- requirements and tests for stockbridge type aeolian vibration dampers", in International Electro technical Commission, Switzerland., (1998 of Conference).

32.   Achenbach, J., "Wave propagation in elastic solids, Elsevier,  (2012).


International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir