Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 28, No. 10 (October 2015) 1525-1532   

downloaded Downloaded: 106   viewed Viewed: 2035

  EVALUATING THE EFFECTS OF CERAMIC LAYER AND THERMAL DAM ON OPTIMIZING THE TEMPERATURE GRADIENT OF A GASOLINE ENGINE PISTON (TECHNICAL NOTE)
 
H. Golbakhshi, M. Namjoo and E. Raeisi Estabragh
 
( Received: July 25, 2015 – Accepted: October 16, 2015 )
 
 

Abstract    The purpose of this paper is to evaluate the effect of different methods for improving the temperature gradient of a specified gasoline engine piston. With a robust FE based software, 3D thermal analyses have been carried out for the piston model. Unlike previous studies, the effects of both fully and locally ceramic layers on the crown top surface were considered. It was found that a fully ceramic layer provides just 10-15% more thermal protection. The effects of thermal dam and lubricating oil temperature on crown and skirt surfaces were then separately investigated. Using these methods, the maximum surface temperature of the piston was greatly improved and the temperature distribution of piston skirt was effectively controlled.

 

Keywords    Piston, FEM, Thermal analysis, Coating layer, Thermal dam.

 

چکیده    به منظور بهبود و بهینه سازی شرایط حرارتی کارکرد پیستون یک موتور احتراق داخلی بنزینی، شبیه سازی سه بعدی دقیقی از هندسه نسبتاً پیچیده آن انجام شده و به کمک روش تحلیل عددی قدرتمند اجزاء محدود مورد بررسی حرارتی قرار گرفته است. بر خلاف تحقیقات پیشین، در مطالعه حاضر تأثیر هر دو نوع پوشش سرامیکی کلی و جزئی روی سطح فوقانی پیستون بر دمای تاج آن برآورد گردید. طبق نتایج به دست آمده، پوشش کلی تنها 15-10 درصد حفاظت حرارتی بیشتری ایجاد نمود. نقش ایجاد سد حرارتی در کاهش دمای دامنه پیستون نیز تحلیل شد. نتایج حاصل از این تحلیل به خوبی گواه این واقعیت بودند که با اجرای این اصلاحات، دمای نواحی مهمی نظیر تاج پیستون و دامنه آن به خوبی کنترل می­شوند.

References   

 

1.  Yonushonis, T.M., “Overview of thermal barrier coatings in diesel engines”, Journal of Thermal Spray Technology, Vol. 6, (1997), 50-56.

2.  Cerit, M., “Thermo mechanical analysis of a partially ceramic coated piston used in an SI engine”, Surface and coatings Technology, Vol. 205, (2011), 3499-3505.

3.  Buyukkaya, E., “Thermal analysis of functionally graded coating AlSi alloy and steel pistons”, Surface and Coatings Technology, Vol. 202, (2008), 3856-3865.

4.  Buyukkaya, E., Cerit, M., “Thermal analysis of a ceramic coating diesel engine piston using 3-D finite element method”, Surface and Coatings Technology, Vol. 202, (2007), 398-402.

5.  Committee, A.I.H., “ASM Handbook–Volume 1: Properties and Selection: Irons, Steels, and High Performance Alloys”, ASM International, (1990), 950-980.

6.  Esfahanian, V., Javaheri, A., Ghaffarpour, M., “Thermal analysis of an SI engine piston using different combustion boundary condition treatments”, Applied Thermal Engineering, Vol. 26, (2006), 277-287.

7.  Liu, X.-B., Pang, M., Zhang, Z.-G., Tan, J.-S., Zhu, G.-X., Wang, M.-D., “Numerical simulation of stress field for laser thermal loading on piston”, Optics & Laser Technology, Vol. 44, (2012), 1636-1640.

8.  Luo, Y., Wang, Z., Zeng, J., Lin, J., “Fatigue of piston rod caused by unsteady, unbalanced, unsynchronized blade torques in a Kaplan turbine”, Engineering Failure Analysis, Vol. 17, (2010), 192-199.

9.  Yang, Y.-C., Lee, H.-L., “Transient thermal loading induced optical effects in single-coated optical fibers with interlayer thermal resistance”, Optical Fiber Technology, Vol. 14, (2008), 143-148.

10.  Goswami, T., “Low cycle fatigue life prediction—a new model”, International Journal of Fatigue, Vol. 19, (1997), 109-115.

11.  Visca, E., Libera, S., Orsini, A., Riccardi, B., Sacchetti, M., “Thermal fatigue equipment to test joints of materials for high heat flux components”, Fusion Engineering and Design, Vol. 49, (2000), 377-382.

12.  Cerit, M., Soyhan, H.S., “Thermal analysis of a combustion chamber surrounded by deposits in an HCCI engine”, Applied Thermal Engineering, Vol. 50, (2013), 81-88.

13.  Li, C.-H., Piston thermal deformation and friction considerations, SAE Technical Paper, (1982).

14.  Abbes, M.T., Maspeyrot, P., Bouif, A., Frene, J., “A thermomechanical model of a direct injection diesel engine piston”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 218, (2004), 395-409.

15.  Bohac, S.V., Baker, D.M., Assanis, D.N., A global model for steady state and transient SI engine heat transfer studies, SAE Technical Paper, (1996).

16.  Lee, B., Kim, W., “Thermal analysis of a liquid-petroleum-liquid injection engine piston using the inverse heat conduction method”, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Vol. 222, (2008), 1033-1045.

17.  Lu, X., Li, Q., Zhang, W., Guo, Y., He, T., Zou, D., “Thermal analysis on piston of marine diesel engine”, Applied Thermal Engineering, Vol. 50, (2013), 168-176.

18.  Liu, Y., “Structural and NVH analyses of mixed thin-walled structures using FEA concept models”, International Journal of Computer Applications in Technology, Vol. 32, (2008), 63-68.

19.  Chen, X., Yang, S., Ma, J., He, Z., “The construction of wavelet finite element and its application”, Finite Elements in Analysis and Design, Vol. 40, (2004), 541-554.

20.  Zhao, B., “Thermal stress analysis of ceramic-coated diesel engine pistons based on the wavelet finite-element method”, Journal of engineering mechanics, Vol. 138, (2011), 143-149.

21.  Jalaludin, H.A., Abdullah, S., Ghazali, M.J., Abdullah, B., Abdullah, N.R., “Experimental Study of Ceramic Coated Piston Crown for Compressed Natural Gas Direct Injection Engines”, Procedia Engineering, Vol. 68, (2013), 505-511.

22.  Buyukkaya, E., “Effects of thermal barrier coating on a turbocharged diesel engine exhaust emissions, Sakarya University”, Mechanical Engineering Department, Ph D. thesis, Institute of Sciences and Technology, Turkey, (1997).

23.  Nazoktabar, M., Mehdipour, R., Baniamerian, Z., “simulation of boiling heat transfer within water jacket of 4-cylinder gasoline engine (technical note)”, International Journal of Engineering-Transactions C: Aspects, Vol. 27, (2014), 19-28.

24.  Ostapski, W., “Analysis of thermo-mechanical response in an aircraft piston engine by analytical, FEM, and test-stand investigations”, Journal of Thermal Stresses, Vol. 34, (2011), 285-312.

25.  Cerit, M., Coban, M., “Temperature and thermal stress analyses of a ceramic-coated aluminum alloy piston used in a diesel engine”, International Journal of Thermal Sciences, Vol. 77, (2014), 11-18.

26.  Ebrahimi, M., Farhadi, M., Sedighi, K., Akbarzade, S., “Experimental investigation of force convection heat transfer in a car radiator filled with SiO 2–water nanofluid”, International Journal of Engineering Transication B: Application, Vol. 27, (2014), 333-340.

27.  Azadia, M., Rouhaghdam, A.S., Ahangarani, S., “effect of temperature and gas flux on the mechanical behavior of tic coating by pulsed dc plasma enhanced chemical vapor deposition (technical note)”, International Journal of Engineering-Transactions B: Applications, Vol. 27, (2013), 1243-1250.

28.  Golbakhshi, H., Namjoo, M., Mohammadi, M., “A 3D comprehensive finite element based simulation for best Shrink Fit design process”, Mechanics & Industry, Vol. 14, (2013), 23-30.

29.  Semin, S., ABU, B.R., Ismail, A., Ali, I., “an experimental investigation of diesel engines fuel injection pressure effect on power performance and fuel consumption”, International Journal of Engineering-Transactions B: Applications, Vol. 22, (2008), 91-97.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir