Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 28, No. 2 (February 2015) 214-223   

downloaded Downloaded: 903   viewed Viewed: 4102

  A NEW BALANCING AND RANKING METHOD BASED ON HESITANT FUZZY SETS FOR SOLVING DECISION-MAKING PROBLEMS UNDER UNCERTAINTY
 
H. Gitinavard, S. M. Mousavi and B. Vahdani
 
( Received: June 24, 2014 – Accepted: November 13, 2014 )
 
 

Abstract    The purpose of this paper is to extend a new balancing and ranking method to handle uncertainty for a multiple attribute analysis under a hesitant fuzzy environment. The presented hesitant fuzzy balancing and ranking (HF-BR) method does not require attributes’ weights through the process of multiple attribute decision making (MADM) under hesitant conditions. For the rating of possible alternatives, firstly, they are defined as hesitant fuzzy terms and then converted into hesitant fuzzy sets. Second, an outranking matrix indicates that a possible alternative overcomes the other alternatives regarding to each chosen attribute. Third, the outranking matrix is triangularized; this means that we prepare provisional order of possible alternatives or implicit preordering under hesitant conditions. Eventually, the empirical order of alternatives goes through variant operations of balancing and screening that needs continuous application of a balancing axiom to the advantages–disadvantages table. It links incompatible attributes with pair-wise comparisons of the possible alternatives for the multiple attribute analysis. Finally, we present an application example for the supplier selection to show the applicability and feasibility of the proposed HF-BR method in the hesitant fuzzy setting.

 

Keywords    Ranking and Balancing Method, Multiple Attribute Decision Making, Advantage and Disadvantage Matrix, Outranking Matrix, Hesitant Fuzzy Set.

 

چکیده    هدف از این مقاله، توسعه­ی یک روش جدید متعادل­سازی و رتبه بندی برای تجزیه و تحلیل چند معیاره در محیط فازی تردیدی است. روش ارائه شده نیازمند وزن معیارها در فرآیند تصمیم­گیری چند معیاره در محیط تردیدی نیست. برای ارزیابی گزینه های ممکن، ابتدا آنها با متغیرهای زبانی تعریف می شوند و سپس به مجموعه­ی فازی تردیدی تبدیل می­شوند. همچنین با تشکیل ماتریس برتری نشان داده می شود که کدام گزینه بر دیگر گزینه ها با توجه به معیارها برتری دارد. سپس ماتریس برتری مثلثی می­شود؛ این بدان معناست که گزینه های ممکن به طور موقت مرتب شده و یا به عبارت دیگر به طور تلویحی در شرایط تردیدی از قبل مرتب­سازی می گردند. در نهایت، این رتبه بندی تجربی گزینه ها باید در عملیات­های متفاوت متعادل­سازی و غربال­گری روش مذکور قرار گیرد که از اینرو نیازمند یک برنامه­ی مستمر از اصل متعادل­سازی بنام جدول مزایا-معایب است. این جدول، با مقایسه ی دو­به­دو گزینه­های ممکن با توجه به معیارها، میزان برتری آنها را می­سنجد. در آخر با استفاده از یک مطالعه­ی کاربردی در زمینه­ی انتخاب تامین کنندگان، کاربردپذیری و امکانپذیر بودن روش در شرایط فازی تردیدی نشان داده می شود.

References   

1.     Zadeh, L.A., "Fuzzy sets", Information and control, Vol. 8, (1965), 338-353.

2.     Doria, S., "Characterization of a coherent upper conditional prevision as the Choquet integral with respect to its associated Hausdorff outer measure", Annals of Operations Research, Vol. 195, (2012), 33-48.

3.     Greco, S., Matarazzo, B., and Giove, S., "The Choquet integral with respect to a level dependent capacity", Fuzzy sets and Systems, Vol. 175, (2011), 1-35.

4.     Demirel, T., Demirel, N.C., and Kahraman, C., "Multi-criteria warehouse location selection using Choquet integral", Expert Systems with Applications, Vol. 37, (2010), 3943-3952.

5.     Qin, J. and Liu, X., "Study on Interval Intuitionistic Fuzzy Multi-Attribute Group Decision Making Method based on Choquet Integral", Procedia Computer Science, Vol. 17, (2013), 465-472.

6.     Bonetti, A., Bortot, S., Fedrizzi, M., Marques Pereira, R. A., and Molinari, A. , "Modelling group processes and effort estimation in project management using the Choquet integral: An MCDM approach", Expert Systems with Applications, Vol. 39, No. 18, (2012), 13366-13375.

7.     Samantra, C., Datta, S., and SankarMahapatra, S., "Risk Assessment in IT Outsourcing using Fuzzy Decision-Making Approach: An Indian Perspective", Expert Systems with Applications, Vol. 41, (2014), 4010–4022.

8.     Wang, J.Q., et al., "Multi-criteria outranking approach with hesitant fuzzy sets", OR Spectrum, Vol. 36, (2014), 1001-1019.

9.     Mousavi, S.M., Torabi, S.A., and Tavakkoli-Moghaddam, R., "A hierarchical group decision-making approach for new product selection in a fuzzy environment". Arabian Journal for Science and Engineering, Vol. 38, No. 11, (2013), 3233-3248.

10.   Mousavi, S.M., Jolai, F., and Tavakkoli-Moghaddam, R., "A fuzzy stochastic multi-attribute group decision-making approach for selection problems", Group Decision and Negotiation, Vol. 22, No. 2, (2013), 207-233.

11.   Vahdani, B., Tavakkoli-Moghaddam, R., Mousavi, S. M., and Ghodratnama, A. "Soft computing based on new interval-valued fuzzy modified multi-criteria decision-making method", Applied Soft Computing, Vol. 13, No. 1, (2013), 165-172.

12.   Cao, Q.-w. and Wu, J., "The extended COWG operators and their application to multiple attributive group decision making problems with interval numbers", Applied Mathematical Modelling, Vol. 35, No. 5, (2011), 2075-2086.

13.   Vahdani, B., Mousavi, S.M., Tavakkoli-Moghaddam, R., and Hashemi, H., "A new design of the elimination and choice translating reality method for multi-criteria group decision-making in an intuitionistic fuzzy environment". Applied Mathematical Modelling, Vol. 37, No. 4, (2013), 1781-1799.

14.   Yue, Z., "An extended TOPSIS for determining weights of decision makers with interval numbers", Knowledge-Based Systems, Vol. 24, (2011), 146-153.

15.   Atanassov, K.T., "Intuitionistic fuzzy sets", Fuzzy sets and Systems, Vol. 20, No. 1, (1986), 87-96.

16.   Hashemi, H., Bazargan, J., and Mousavi, S.M., "A Compromise Ratio Method with an Application to Water Resources Management: An Intuitionistic Fuzzy Set", Water Resources Management, Vol. 27, (2013), 2029-2051.

17.   Xu, Z., "Intuitionistic preference relations and their application in group decision making", Information Sciences, Vol. 177, (2007),  2363-2379.

18.   Parreiras, R. O., Ekel, P. Y., Martini, J. S. C., and Palhares, R. M., "A flexible consensus scheme for multicriteria group decision making under linguistic assessments", Information Sciences, Vol. 180, No. 7, (2010), 1075-1089.

19.   Vahdani, B., and Zandieh, M., "Selecting suppliers using a new fuzzy multiple criteria decision model: the fuzzy balancing and ranking method",International Journal of Production Research, Vol. 48, (2010), 5307-5326.

20.   Yu, D., Wu, Y., and Zhou, W., "Multi-Criteria Decision Making Based on Choquet Integral Under Hesitant Fuzzy Environment", Journal of Computational Information Systems, Vol. 7, (2011), 4506-4513.

21.   Zhang, N. and Wei, G., "Extension of VIKOR method for decision making problem based on hesitant fuzzy set". Applied Mathematical Modelling, Vol. 37, (2013), 4938–4947.

22.   Liao, H. and Xu, Z., "A VIKOR-based method for hesitant fuzzy multi-criteria decision making", Fuzzy Optimization and Decision Making, Vol. 12, (2013), 373-392.

23.   Xu, Z. and Zhang, X., "Hesitant fuzzy multi-attribute decision making based on TOPSIS with incomplete weight information", Knowledge-Based Systems, Vol. 52, (2013), 53-64.

24.   Torra, V. and Narukawa, Y. On hesitant fuzzy sets and decision. FUZZ-IEEE. IEEE International Conference on Fuzzy Systems,(2009)

25.   Torra, V., "Hesitant fuzzy sets", International Journal of Intelligent Systems, Vol. 25, No. 6, (2010), 529-539.

26.   Rodríguez, R. M., Martínez, L., Torra, V., Xu, Z. S., and Herrera, F., Hesitant Fuzzy Sets: State of the Art and Future Directions, International Journal of Intelligent Systems, Vol. 29, No. 6, (2014), 495-524.

27.   Rodriguez, R.M., Martinez, L., and Herrera, F., "Hesitant fuzzy linguistic term sets for decision making", IEEE Transactions on Fuzzy Systems, Vol. 20, (2012), 109-119.

28.   Zhu, B., Xu, Z., and Xia, M., "Hesitant fuzzy geometric Bonferroni means",Information Sciences, Vol. 205, (2012), 72-85.

29.   Xia, M. and Xu Z., "Hesitant fuzzy information aggregation in decision making", International Journal of Approximate Reasoning, Vol. 52, (2011), 395-407.

30.   Xia, M., Xu, Z., and Chen, N., "Some hesitant fuzzy aggregation operators with their application in group decision making", Group Decision and Negotiation, Vol. 22, No. 2, (2013), 259-279.

31.   Wei, G., Hesitant fuzzy prioritized operators and their application to multiple attribute decision making. Knowledge-Based Systems, Vol. 31, (2012),176-182.

32.   Torra, V., "Element selection for intuitionistic fuzzy sets", International Journal of Knowledge Engineering and Soft Data Paradigms, Vol. 2, No. 2, (2010), 160-168.

33.   Xu, Z. and Xia, M., "Distance and similarity measures for hesitant fuzzy sets", Information Sciences, Vol. 181, No. 11, (2011), 2128-2138.

34.   Xu, Z. and Xia, M., "On distance and correlation measures of hesitant fuzzy information", International Journal of Intelligent Systems, Vol. 26, No. 5, (2011), 410-425.

35.   Atanassov, K.T., "More on intuitionistic fuzzy sets", Fuzzy sets and Systems, Vol. 33, (1989), 37-45.

36.   Atanassov, K.T., "Two theorems for intuitionistic fuzzy sets", Fuzzy sets and Systems, Vol. 110, No. 2, (2000), 267-269.

37.   Xu, Z., "Intuitionistic fuzzy aggregation operators", IEEE Transactions on Fuzzy Systems, Vol. 15, No. (6), (2007), 1179-1187.

38.   Liao, H. and Xu, Z., "Subtraction and division operations over hesitant fuzzy sets", Journal of Intelligent and Fuzzy Systems, Vol. 27, (2014), 65-72.

39.   Jahanshahloo, G.R., Hosseinzadeh Lotfi, F., and Davoodi, A., "Extension of TOPSIS for decision-making problems with interval data: Interval efficiency", Mathematical and Computer Modelling, Vol. 49, (2009), 1137-1142.

40.   Strassert, G. and Prato, T., "Selecting farming systems using a new multiple criteria decision model: the balancing and ranking method", Ecological Economics, Vol. 40, No. 2, (2002), 269-277.

41.   Chen, N., Xu Z., and Xia M., "Interval-valued hesitant preference relations and their applications to group decision making", Knowledge-Based Systems, Vol. 37, (2013), 528-540.

42. Tavakkoli-Moghaddam, R., Mousavi, S.M., and Heydar, M., "An integrated AHP-VIKOR methodology for plant location selection", International Journal of Engineering Transactions B: Applications, Vol. 24, No. 2, (2011), 127-137.

43. Mousavi, S.M., Makui, A., Raissi, S., and Mojtahedi, S.M.H., “A multi-criteria decision-making approach with interval numbers for evaluating project risk responses”, International Journal of Engineering Transactions B: Applications, Vol. 25, No. 2, (2012), 117-124.

44. Kaboli, A., Aryanezhad, M.B., and Shahanaghi, K., Tavakkoli-Moghaddam, R., "A holistic approach based on mcdm for solving location problems", International Journal of Engineering Transactions A: Basics, Vol. 20, No. 3, (2007), 251-262.

45. Vahdani, B., Salimi, M., and Mousavi, S.M., "A new compromise decision-making model based on TOPSIS and VIKOR for solving multi-objective large-scale programming problems with a block angular structure under uncertainty", International Journal of Engineering Transactions B: Applications, Vol. 27, No. 11, (2014), 1673-1680.

46.   Żak, J., "The methodology of multiplecriteria decision making in the optimization of an urban transportation system: case study of Poznań City in Poland", International Transactions in Operational Research, Vol. 6, No. 6, (1999), 571-590.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir