IJE TRANSACTIONS B: Applications Vol. 28, No. 2 (February 2015) 234-242   

downloaded Downloaded: 111   viewed Viewed: 2289

S. Kahrobaee and M. Kashefi
( Received: August 09, 2014 – Accepted: November 13, 2014 )

Abstract    Two nondestructive electromagnetic/magnetic techniques including hysteresis loop and eddy current methodologies have been used to characterize microstructural changes of AISI D2 cold work tool steel as a result of quench and tempering treatments. To measure the fraction retained austenite in quenched microstructure, six specimens were austenitized in the range of 1000-1130 °C. Samples austenitized at 1080 °C were also tempered in the range of 200-650 °C for characterization by eddy current and magnetic hysteresis loop outputs, nondestructively. Impedance point movement and maximum differential permeability were measured as a function of austenitizing/tempering temperature to characterize the microstructural features. The study shows that there are good correlations between microstructural variations detected by destructive methods (hardness, XRD and microscopic observation) and outputs of the nondestructive techniques.


Keywords    Nondestructive method, Microstructural changes, Impedance point, Magnetic differential permeability, Cold work tool steel


چکیده    در پژوهش حاضر از روش ­های الکترومغناطیسی/مغناطیسی حلقه هیسترزیس و جریان گردابی در مشخصه ­یابی فولاد ابزار سردکار که تحت شرايط متفاوت از عمليات کوئنچ و تمپر قرار گرفته، استفاده شده است. به منظور اندازه­گیری کسر آستنيت باقيمانده در ریزساختار حاصل از عمليات کوئنچ، 6 نمونه در محدوده دمایی 1000 تا 1130 درجه سانتي­گراد آستنيته شدند. همچنين، نمونه ­هایی که در دمای 1080 درجه سانتيگراد آستنيته شدند، تحت عمليات تمپر در بازه دمايي 200 تا 650 درجه سانتيگراد قرار گرفتند تا ريزساختارهای بدست آمده با استفاده از روش ­های جریان گردابی و حلقه هیسترزیس به صورت غيرمخرب مشخصه ­يابی شوند. جهت شناسایی مشخصه های ريزساختاری ايجاد شده، حرکت نقطه امپدانس در صفحه مربوطه و همچنين تغييرات بیيشينه نفوذپذيری تفاضلی، به صورت تابعی از دماهای آستنيته و تمپر بررسی شد. مطالعه انجام شده، نشان می­ دهد که ارتباط خوبی بين تغييرات ریزساختاری شناسایی شده با روش ­های مخرب (سختی، تفرق اشعه ايکس و مشاهدات ميکروسکوپی) و خروجی ­های تکنيک­های غیرمخرب بدست آمده است.



1.     Roberts, G.A. and Kennedy, R., "Tool steels, ASM International,  (1998).

2.     Thelning, K.-E. and Black, C.M., "Steel and its heat treatment, Butterworths London,  Vol. 1,  (1984).

3.     Totten, G.E. and Howes, M.A., "Steel heat treatment handbook, CRC Press,  (1997).

4.     Unterweiser, P.M., "Heat treater's guide: Standard practices and procedures for steel, Asm Intl,  (1982).

5.     Avner, S.H., "Introduction to physical metallurgy", (1964).

6.     Carlson, E., "Cold treating and cryogenic treatment of steel in asm handbook, vol. 4 heat treating", ASM International, 10th Ed., Metals Park, OH, (1990), 203-206.

7.     Hirotsu, Y. and Nagakura, S., "Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering", Acta Metallurgica,  Vol. 20, No. 4, (1972), 645-655.

8.     Williamson, D., Nakazawa, K. and Krauss, G., "A study of the early stages of tempering in an fe-1.2 pct alloy", Metallurgical Transactions A,  Vol. 10, No. 9, (1979), 1351-1363.

9.     Gavriljuk, V.G., Sirosh, V.A., Petrov, Y.N., Tyshchenko, A.I., Theisen, W. and Kortmann, A., "Carbide precipitation during tempering of a tool steel subjected to deep cryogenic treatment", Metallurgical and Materials Transactions A,  Vol. 45, No. 5, (2014), 2453-2465.

10.   J., P. and B., P., "Effect of tempering temperature on 30hgsa steel toughness", Metallurgy and Casting,  Vol. 10, No., (1984), 409-421.

11.   Kokosza, A. and Pacyna, J., "Evaluation of retained austenite stability in heat treated cold work tool steel", Journal of Materials Processing Technology,  Vol. 162, No., (2005), 327-331.

12.   Bała, P., Pacyna, J. and Krawczyk, J., "The kinetics of phase transformations during tempering of cr-mo-v medium carbon steel", Journal of Achievements in Materials and Manufacturing Engineering,  Vol. 20, No. 1-2, (2007), 79-82.

13.   Bała, P., Pacyna, J. and Krawczyk, J., "The influence of the kinetics of phase transformations during tempering on the structure development in a high carbon steel", Archives of Metallurgy and Materials,  Vol. 52, No. 1, (2007), 113-120.

14.   Handbook, M., "Heat treating", vol,  Vol. 4, No., (1991), 744.

15.   Tavares, S.S.M., Mello, S.R., Gomes, A.M., Neto, J.M., da Silva, M.R. and Pardal, J.M., "X-ray diffraction and magnetic characterization of the retained austenite in a chromium alloyed high carbon steel", Journal of Materials Science,  Vol. 41, No. 15, (2006), 4732-4736.

16.   Samuels, L.E., "Optical microscopy of carbon steels, American Society for Metals,  (1980).

17.   Farrahi, G.H. and Lebrun, J.L., "Surface hardness measurement and micro-structural characterization of steel by x-ray diffraction profile analysis", International Journal of Engineering,  Vol. 8, No. 3, (1995), 159-167.

18.   Farrahi, G.H., "The dc electrical potential method for the measurement of fretting cracks", International Journal of Engineering,  Vol. 9, No. 1, (1996), 19-27.

19.   Rakideh, M., Dardel, M. and Pashaei, M., "Crack detection of timoshenko beams using vibration behavior and neural network", International Journal of Engineering-Transactions C: Aspects,  Vol. 26, No. 12, (2013), 1433.

20.   Wang, Y. and Wu, Q., "Experimental detection of composite delamination damage based on ultrasonic infrared thermography", International Journal of Engineering (1025-2495),  Vol. 27, No. 11, (2014).

21.   Hagemaier, D.J., "Fundamentals of eddy current testing, American Society for Nondestructive Testing,  (1990).

22.   Bray, D.E. and Stanley, R.K., "Nondestructive evaluation: A tool in design, manufacturing and service, CRC press,  (1996).

23.   Shull, P.J., "Nondestructive evaluation: Theory, techniques, and applications, CRC press,  (2002).

24.   Kashefi, M. and Kahrobaee, S., "Dual-frequency approach to assess surface hardened layer using nde technology", Journal of materials engineering and performance,  Vol. 22, No. 4, (2013), 1108-1112.

25.   Kashefi, M., Rafsanjani, A., Kahrobaee, S. and Alaee, M., "Magnetic nondestructive technology for detection of tempered martensite embrittlement", Journal of Magnetism and Magnetic Materials,  Vol. 324, No. 23, (2012), 4090-4093.

26.   Zergoug, M., Lebaili, S., Boudjellal, H. and Benchaala, A., "Relation between mechanical microhardness and impedance variations in eddy current testing", NDT & E International,  Vol. 37, No. 1, (2004), 65-72.

27.   Foyet, A., Wu, T., Kodentsov, A., van der Ven, L., de With, G. and van Benthem, R., "Impedance evaluation of permeability and corrosion of al-2024 aluminum alloy coated with a chromate free primer", Progress in Organic Coatings,  Vol. 65, No. 2, (2009), 257-262.

28.   Amiri, M.S. and Kashefi, M., "Investigation of variables affecting impedance plane in eddy current testing of carburized steels", Journal of materials engineering and performance,  Vol. 20, No. 3, (2011), 476-480.

29.   Stupakov, O., "Investigation of applicability of extrapolation method for sample field determination in single-yoke measuring setup", Journal of Magnetism and Magnetic Materials,  Vol. 307, No. 2, (2006), 279-287.

30.   Standard, A., "E975-03: Standard practice for x-ray determination of retained austenite in steel with near random crystallographic orientation", ASTM, West Conshohocken, PA,  Vol., No., (2008).

31.   Davut, K. and Gür, C.H., "Monitoring the microstructural changes during tempering of quenched sae 5140 steel by magnetic barkhausen noise", Journal of Nondestructive Evaluation,  Vol. 26, No. 2-4, (2007), 107-113.

32.   Sheikh Amiri, M. and Kashefi, M., "Application of eddy current nondestructive method for determination of surface carbon content in carburized steels", NDT & E International,  Vol. 42, No. 7, (2009), 618-621.


International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir