IJE TRANSACTIONS B: Applications Vol. 28, No. 2 (February 2015) 305-313   

downloaded Downloaded: 196   viewed Viewed: 2258

A. Ashrafi, M. Ketabdari and H. Ghassemi
( Received: August 08, 2014 – Accepted: November 13, 2014 )

Abstract    In this paper the effects of rigid triangular passive vortex generators on a hydrofoil were investigated numerically. In the first step using the Finite Volume Method the bare hydrofoil were modeled and the results of lift and drag coefficients were validated using experimental data. In the next step the hydrofoil armed with vortex generators was modeled and its effect on the hydrofoil performance was examined. In the next step by introducing a source term into the momentum equation the vortex generators effect was considered. However their geometry was completely removed. The results showed that this can significantly decrease the computational memory and calculation time. The results also revealed that the use of vortex generators can delay the stall conditions by increase the stall angle leading to a higher lift coefficient in new stall angle and decreasing the drag coefficient. In a case study on NACA 0012 section profile results showed that the use of vortex generators increases the stall angle by 4 degrees and the lift coefficient at this point by 37%.


Keywords    Hydrofoil, Drag Reduction, Vortex Generators, Finite Volume Method, Source Term


چکیده    در این مقاله اثرات نصب یک تولید کننده گردابه غیر فعال مثلثی شکل روی هیدرو فویل به روش عددی مورد یررسی قرار گرفته است. در قدم اول هیدروفویل بدون تولید کننده گردابه به روش حجم محدود مدل شد و و نتایج مدلسازی عددی به کمک نتایج آزمایشگاهی معتبر گردید. در قدم دوم تولید کننده گردابه مدل شده و اثر آن روی هیدرو فویل مورد مطالعه قرار گرفت. در قدم بعد با استفاده از روش ترم چشمه و اضافه کردن آن به معادله مومنتوم اثر تولید کننده گردابه منظور شد اما هندسه از روی هیدروپلن بطور کامل حذف شد. نتایج نشان داد که با اینکار حافظه لازم و زمان محاسباتی برای مدلی که در نظر گرفته شده به اندازه قابل توجهی کاهش می یابد. نتایج همچنین نشان داد که استفاده از تولید کننده گردابه برروی هیدروفویل باعث تاخیر حالت توقف و در واقع افزایش این زاویه می گردد. این به نوبه خود باعث افزایش ضریب برا در زاویه حمله جدید هیدروفویل و کاهش ضریب پسا می گردد. در یک مطالعه موردی روی هیدروفویلی با مقطع NACA 0012 این افزایش برای زاویه استال هیدروفویل برابر 4 درجه و برای صریب برا 37% بدست آمد.


1.     Lin, J.C., "Review of research on low-profile vortex generators to control boundary-layer separation", Progress in Aerospace Sciences,  Vol. 38, No. 4, (2002), 389-420.

2.     McManus, L.P., "A preliminary study of three-dimensional turbulent flow over vortex generators with a plenoptic camera",  (2014).

3.     Islam, M.R., Hossain, M.A., Mashud, M. and Gias, M.T.I., "Drag reduction of a car by using vortex generator", (2010)

 4.     Reck, M., Hansen, M.O.L., Sørensen, J.N. and Michelsen, J., "Computational fluid dynamics, with detached eddy simulation and the immersed boundary technique, applied to oscillating airfoils and vortex generators", Technical University of DenmarkDanmarks Tekniske Universitet, Department of Energy EngineeringInstitut for Energiteknik,  (2004),

5.     Paul, A.R., Ranjan, P., Patel, V.K. and Jain, A., "Comparative studies on flow control in rectangular s-duct diffuser using submerged-vortex generators", Aerospace Science and Technology,  Vol. 28, No. 1, (2013), 332-343.

6.     Godard, G. and Stanislas, M., "Control of a aecelerating boundary layer . Part 3: Optimization of round jets vortex generators", Aerosp. Sci. Technol,  Vol. 10, (2006), 455-464.

7.     Quackenbush, T.R., Danilov, P.V. and Whitehouse, G.R., "Flow driven oscillating vortex generators for control of boundary layer separation", in 40th Fluid Dynamics Conference and Exhibit. (2010), 1-15.

8.     Quackenbush, T.R., McKillip Jr, R.M. and Whitehouse, G.R., "Development and testing of deployable vortex generators using sma actuation", in Proceedings of the 28th AIAA Applied Aeroacoustics Conference. (2010), 1-16.

9.     Jahanmiri, M. and Abbaspour, M., "Experimental investigation of drag reduction on ahmed car model using a combination of active flow control methods", International Journal of Engineering,  Vol. 24, No. 4, (2011), 403-410.

10.   Jafari, M., Toloei, A., Ghasemlu, S. and Parhizkar, H., "Simulation of store separation using low-cost cfd with dynamic meshing", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 5, (2013), 775-781.

11.   Karim, M.M., Rahman, M. and Alim, M.A., "Performance of sst k-ω turbulence model for computation of viscous drag of axisymmetric underwater bodies", International Journal of Engineering,  Vol.26, No.4, (2011), 345-352.

12.   Von Stillfried, F., "Computational studies of passive vortex generators for flow control, Skolan för teknikvetenskap, Kungliga Tekniska högskolan,  (2009).

13.   Durst, F., "Fluid mechanics: An introduction to the theory of fluid flows, Springer,  (2008).

14.   Versteg, H. and Malalasekera, W., "An introduction to computational fluid dynamics", Finite Volume Method, Essex, Longman Scientific & Technical,  (1995).

15.   Waithe, K.A., "Source term model for vortex generator vanes in a navier-stockes computer code", The 42nd AIAA Aerospace Sciences Meeting and Exhibit,  (2004), 1-11.

16.   Abbott, I.H., "Theory of wing sections, including a summary of airfoil data, Courier Dover Publications,  (1959).  

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir