|

|
IJE TRANSACTIONS B: Applications Vol. 28, No. 2 (February 2015) 314-320
|
Downloaded:
244 |
|
Viewed:
2479 |
|
|
INVESTIGATION OF THERMOELASTIC DAMPING IN THE LONGITUDINAL VIBRATION OF A MICRO BEAM
|
|
|
M. Maroofi, S. Najafi, R. Shabani and G. Rezazadeh
|
|
|
( Received:
April 28, 2014
– Accepted: November 13, 2014 )
|
|
|
Abstract
In the design of high Quality factor (Q) micro or nano beam resonators, different dissipation mechanisms may have
damaging effects on the quality factor. One of the major dissipation mechanisms is the thermoelastic damping (TED) that
needs an accurate consideration for prediction. In this paper, thermoelastic damping of the longitudinal vibration of a
homogeneous micro beam with both ends clamped have been investigated. A Galerkin method has been used to analyze
thermoelastic damping for the first mode of vibration of the micro beam. Then the quality factor and longitudinal
vibrations frequency are obtained. Changing of Quality factor versus geometrical properties and ambient temperature for
different materials are plotted.
|
|
|
Keywords
Quality Factor, Thermoelastic Damping, Longitudinal Vibrations, Coupled Equations, Galerkin Method, Natural Frequency
|
|
|
چکیده
در طراحی فاکتور کیفیت بالا، مکانیزم های اتلافی میکرو و نانو تیرها می توانند تاثیر منفی روی فاکتور کیفیت داشته باشند. یکی از مکانیزم های اتلافی مهم ترموالاستیک دمپینگ می باشد که برای پیش بینی آن نیازمند مطالعات دقیقی هستیم. در این مقاله به بررسی ترموالاستیک دمپینگ ارتعاشات طولی در یک میکرو تیر همگن دو سر گیر دار می پردازیم. برای تحلیل ترموالاستیک دمپینگ در مود ارتعاشی اول میکرو تیر، روش گلرکین مورد استفاده قرار گرفته است. سپس فاکتور کیفیت و فرکانس ارتعاشات طولی بدست آمده است. نحوه تغییرات فاکتور کیفیت نسبت به ابعاد و دمای محیط برای جنس های مختلف ترسیم شده است
|
|
References
1. Rezazadeh, G., Saeedivahdat, A., Pesteii, S. and Farzi, B.,
“Study of thermoelastic damping in capacitive micro-beam resonators using
hyperbolic heat conduction model”, Sensors and Transducers Journal,
Vol. 108, (2009), 54-72.
2. Nayfeh, A.H. and Younis, M.I., “Modeling and simulations of
thermoelastic damping in microplates”, Journal of Micromechanics and
Microengineering, Vol. 14, (2004), 17-28.
3. Zener, C., “Internal friction in solids. I. Theory of internal
friction in reeds”, Physical review, Vol. 52, (1937), 230-241.
4. Zener, C., “Internal friction in solids II. General theory of
thermoelastic internal friction”, Physical Review, Vol. 53, (1938), 90.
5. Lifshitz, R. and Roukes, M.L., “Thermoelastic damping in micro-and
nanomechanical systems”, Physical review B, Vol. 61, (2000), 5600.
6. Landau, L.D. and Lifshitz, E., Course of Theoretical Physics Vol 7:
Theory and Elasticity, Pergamon Press, 1959.
7. Evoy, S., Olkhovets, A., Sekaric, L., Parpia, J.M., Craighead, H.G.
and Carr, D., “Temperature-dependent internal friction in silicon
nanoelectromechanical systems”, Applied Physics Letters, Vol. 77, (2000),
2397-2399.
8. Duwel, A., Gorman, J., Weinstein, M., Borenstein, J. and Ward, P.,
“Experimental study of thermoelastic damping in MEMS gyros”, Sensors and
Actuators A: Physical, Vol. 103, (2003), 70-75.
9. De, S.K. and Aluru, N., “Theory of thermoelastic damping in
electrostatically actuated microstructures”, Physical Review B, Vol. 74,
(2006), 144-305.
10. Guo, F. and Rogerson, G., “Thermoelastic coupling effect on a
micro-machined beam resonator”, Mechanics research communications, Vol. 30,
(2003), 513-518.
11. Sun, Y., Fang, D. and Soh, A.K., “Thermoelastic damping in
micro-beam resonators”, International Journal of Solids and Structures, Vol.
43, (2006), 3213-3229.
12. Khanchehgardan, A., Shah-Mohammadi-Azar, A., Rezazadeh, G. and
Shabani, R., “Thermo-elastic damping in nano-beam resonators based on nonlocal
theory”, International Journal of Engineering-Transactions C: Aspects,
Vol. 26, (2013), 1505-1514.
13. Roszhart, T.V., The effect of thermoelastic internal friction on the
Q of micromachined silicon resonators, in:
Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest.,
IEEE, IEEE, (1990), 13-16.
14. JafarSadeghi-Pournaki, I., Zamanzadeh, M., Madinei, H. and
Rezazadeh, G., “Static Pull-in Analysis of Capacitive FGM Nanocantilevers
Subjected to Thermal Moment using Eringen’s Nonlocal Elasticity”, International
Journal of Engineering-Transactions A: Basics, Vol. 27, (2013), 633-642.
15. Choi, J., Cho, M. and Rhim, J., “Efficient prediction of the quality
factors of micromechanical resonators”, Journal of Sound and Vibration,
Vol. 329, (2010), 84-95.
16. Vahdat, A.S. and Rezazadeh, G., “Effects of axial and residual
stresses on thermoelastic damping in capacitive micro-beam resonators”,
Journal of the Franklin Institute, Vol. 348, (2011), 622-639.
17. Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W.,
Stipe, B.C. and Rugar, D., “Quality factors in micron-and submicron-thick
cantilevers”, Microelectromechanical Systems, Journal of, Vol. 9, (2000),
117-125.
18. Rezazadeh, G., Vahdat, A.S., Tayefeh-rezaei, S. and Cetinkaya, C.,
“Thermoelastic damping in a micro-beam resonator using modified couple stress
theory”, Acta Mechanica, Vol. 223, (2012), 1137-1152.
19. Gorman, D., “Free in-plane vibration analysis of rectangular plates
by the method of superposition”, Journal of Sound and Vibration,
Vol. 272, (2004), 831-851.
20. Wang, G. and Wereley, N.M., “Free in-plane vibration of rectangular
plates”, AIAA journal, Vol. 40, (2002), 953-959.
21. Hagood, N.W. and von Flotow, A., “Damping of structural vibrations
with piezoelectric materials and passive electrical networks”, Journal of
Sound and Vibration, Vol. 146, (1991), 243-268.
22. Wang, L. and Yuan, F., “Vibration energy harvesting by
magnetostrictive material”, Smart Materials and Structures, Vol. 17, (2008),
045009.
23. Shah-Mohammadi-Azar, A., Khanchehgardan, A., Rezazadeh, G. and
Shabani, R., “Mechanical Response of a Piezoelectrically Sandwiched Nano-beam
Based on the Nonlocal Theory”, International Journal of
Engineering-Transactions C: Aspects, Vol. 26, (2013), 1515-1524.
24. Gorman, D., “Accurate analytical type solutions for the free
in-plane vibration of clamped and simply supported rectangular plates”, Journal
of sound and vibration, Vol. 276, (2004), 311-333.
25. Gorman, D., “Free in-plane vibration analysis of rectangular plates
with elastic support normal to the boundaries”, Journal of Sound and Vibration,
Vol. 285, (2005), 941-966.
26. Bardell, N., Langley, R. and Dunsdon, J., “On the free in-plane
vibration of isotropic rectangular plates”, Journal of Sound and
Vibration, Vol. 191, (1996), 459-467.
27. Kobayashi, Y., Yamada, G. and Honma, S., “In-plane vibration of
point-supported rectangular plates”, Journal of Sound and Vibration,
Vol. 126, (1988), 545-549.
28. Seok, J., Tiersten, H. and Scarton, H., “Free vibrations of
rectangular cantilever plates. Part 2: in-plane motion”, Journal of Sound
and Vibration, Vol. 271, (2004), 147-158.
29. Gutierrez, R. and Laura, P., “In-plane vibrations of thin, elastic,
rectangular plates elastically restrained against translation along the edges”,
Journal of Sound and Vibration, Vol. 132, (1989), 512-515.
30. Xing, Y. and Liu, B., “Exact solutions for the free in-plane
vibrations of rectangular plates”, International Journal of Mechanical
Sciences, Vol. 51, (2009), 246-255.
31. Du, J., Li, W.L., Jin, G., Yang, T. and Liu, Z., “An analytical
method for the in-plane vibration analysis of rectangular plates with
elastically restrained edges”, Journal of Sound and Vibration,
Vol. 306, (2007), 908-927.
32. Singh, A. and Muhammad, T., “Free in-plane vibration of isotropic
non-rectangular plates”, Journal of Sound and Vibration, Vol.
273, (2004), 219-231.
33. Woodcock, R.L., Bhat, R.B. and Stiharu, I.G., “Effect of ply
orientation on the in-plane vibration of single-layer composite plates”, Journal
of Sound and Vibration, Vol. 312, (2008), 94-108.
34. Farag, N. and Pan, J., “Free and forced in-plane vibration of
rectangular plates”, The Journal of the Acoustical Society of America,
Vol. 103, (1998), 408-413.
35. Dozio, L., “Free in-plane vibration analysis of rectangular plates
with arbitrary elastic boundaries”, Mechanics Research Communications, Vol. 37,
(2010), 627-635.
36. Andrianov, I.V., Awrejcewicz, J. and Chernetskyy, V., “Analysis of
natural in-plane vibration of rectangular plates using homotopy perturbation
approach”, Mathematical Problems in Engineering, Vol. 2006, (2006).
37. Liu, B. and Xing, Y., “Comprehensive exact solutions for free
in-plane vibrations of orthotropic rectangular plates”, European Journal
of Mechanics-A/Solids, Vol. 30, (2011), 383-395.
38. Hyde, K., Chang, J., Bacca, C. and Wickert, J., “Parameter studies
for plane stress in-plane vibration of rectangular plates”, Journal of Sound
and Vibration, Vol. 247, (2001), 471-487.
39. Talebian, S., Rezazadeh, G., Fathalilou, M. and Toosi, B., “Effect
of temperature on pull-in voltage and natural frequency of an electrostatically
actuated microplate”, Mechatronics, Vol. 20, (2010), 666-673.
40. Sadd, M.H., Elasticity: theory, applications, and numerics, Academic
Press, (2009).
41. Timoshenko, S., Woinowsky-Krieger, S. and Woinowsky, S., Theory of
plates and shells, McGraw-hill New York, (1959).
42. Rao, S.S., Vibration of continuous systems, John Wiley & Sons, (2007).
43. Zamanian, M. and Khadem, S., “Analysis of thermoelastic damping in
microresonators by considering the stretching effect”, International Journal of
Mechanical Sciences, Vol. 52, (2010), 1366-1375.
44. Rao, S.S. and Yap, F.F., Mechanical vibrations, Addison-Wesley New
York, (1995).
|
|
|
|
|