Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 28, No. 2 (February 2015) 314-320   

downloaded Downloaded: 244   viewed Viewed: 2479

  INVESTIGATION OF THERMOELASTIC DAMPING IN THE LONGITUDINAL VIBRATION OF A MICRO BEAM
 
M. Maroofi, S. Najafi, R. Shabani and G. Rezazadeh
 
( Received: April 28, 2014 – Accepted: November 13, 2014 )
 
 

Abstract    In the design of high Quality factor (Q) micro or nano beam resonators, different dissipation mechanisms may have damaging effects on the quality factor. One of the major dissipation mechanisms is the thermoelastic damping (TED) that needs an accurate consideration for prediction. In this paper, thermoelastic damping of the longitudinal vibration of a homogeneous micro beam with both ends clamped have been investigated. A Galerkin method has been used to analyze thermoelastic damping for the first mode of vibration of the micro beam. Then the quality factor and longitudinal vibrations frequency are obtained. Changing of Quality factor versus geometrical properties and ambient temperature for different materials are plotted.

 

Keywords    Quality Factor, Thermoelastic Damping, Longitudinal Vibrations, Coupled Equations, Galerkin Method, Natural Frequency

 

چکیده    در طراحی فاکتور کیفیت بالا، مکانیزم های اتلافی میکرو و نانو تیرها می توانند تاثیر منفی روی فاکتور کیفیت داشته باشند. یکی از مکانیزم های اتلافی مهم ترموالاستیک دمپینگ می باشد که برای پیش بینی آن نیازمند مطالعات دقیقی هستیم. در این مقاله به بررسی ترموالاستیک دمپینگ ارتعاشات طولی در یک میکرو تیر همگن دو سر گیر دار می پردازیم. برای تحلیل ترموالاستیک دمپینگ در مود ارتعاشی اول میکرو تیر، روش گلرکین مورد استفاده قرار گرفته است. سپس فاکتور کیفیت و فرکانس ارتعاشات طولی بدست آمده است. نحوه تغییرات فاکتور کیفیت نسبت به ابعاد و دمای محیط برای جنس های مختلف ترسیم شده است

References   

1. Rezazadeh, G., Saeedivahdat, A., Pesteii, S. and Farzi, B., “Study of thermoelastic damping in capacitive micro-beam resonators using hyperbolic heat conduction model”, Sensors and Transducers Journal, Vol. 108, (2009), 54-72.

2. Nayfeh, A.H. and Younis, M.I., “Modeling and simulations of thermoelastic damping in microplates”, Journal of Micromechanics and Microengineering, Vol. 14, (2004), 17-28.

3. Zener, C., “Internal friction in solids. I. Theory of internal friction in reeds”, Physical review, Vol. 52, (1937), 230-241.

4. Zener, C., “Internal friction in solids II. General theory of thermoelastic internal friction”, Physical Review, Vol. 53, (1938), 90.

5. Lifshitz, R. and Roukes, M.L., “Thermoelastic damping in micro-and nanomechanical systems”, Physical review B, Vol. 61, (2000), 5600.

6. Landau, L.D. and Lifshitz, E., Course of Theoretical Physics Vol 7: Theory and Elasticity, Pergamon Press, 1959.

7. Evoy, S., Olkhovets, A., Sekaric, L., Parpia, J.M., Craighead, H.G. and Carr, D., “Temperature-dependent internal friction in silicon nanoelectromechanical systems”, Applied Physics Letters, Vol. 77, (2000), 2397-2399.

8. Duwel, A., Gorman, J., Weinstein, M., Borenstein, J. and Ward, P., “Experimental study of thermoelastic damping in MEMS gyros”, Sensors and Actuators A: Physical, Vol. 103, (2003), 70-75.

9. De, S.K. and Aluru, N., “Theory of thermoelastic damping in electrostatically actuated microstructures”, Physical Review B, Vol. 74, (2006), 144-305.

10. Guo, F. and Rogerson, G., “Thermoelastic coupling effect on a micro-machined beam resonator”, Mechanics research communications, Vol. 30, (2003), 513-518.

11. Sun, Y., Fang, D. and Soh, A.K., “Thermoelastic damping in micro-beam resonators”, International Journal of Solids and Structures, Vol. 43, (2006), 3213-3229.

12. Khanchehgardan, A., Shah-Mohammadi-Azar, A., Rezazadeh, G. and Shabani, R., “Thermo-elastic damping in nano-beam resonators based on nonlocal theory”, International Journal of Engineering-Transactions C: Aspects, Vol. 26, (2013), 1505-1514.

13. Roszhart, T.V., The effect of thermoelastic internal friction on the Q of micromachined silicon resonators, in:  Solid-State Sensor and Actuator Workshop, 1990. 4th Technical Digest., IEEE, IEEE, (1990), 13-16.

14. JafarSadeghi-Pournaki, I., Zamanzadeh, M., Madinei, H. and Rezazadeh, G., “Static Pull-in Analysis of Capacitive FGM Nanocantilevers Subjected to Thermal Moment using Eringen’s Nonlocal Elasticity”, International Journal of Engineering-Transactions A: Basics, Vol. 27, (2013), 633-642.

15. Choi, J., Cho, M. and Rhim, J., “Efficient prediction of the quality factors of micromechanical resonators”, Journal of Sound and Vibration, Vol. 329, (2010), 84-95.

16. Vahdat, A.S. and Rezazadeh, G., “Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators”, Journal of the Franklin Institute, Vol. 348, (2011), 622-639.

17. Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C. and Rugar, D., “Quality factors in micron-and submicron-thick cantilevers”, Microelectromechanical Systems, Journal of, Vol. 9, (2000), 117-125.

18. Rezazadeh, G., Vahdat, A.S., Tayefeh-rezaei, S. and Cetinkaya, C., “Thermoelastic damping in a micro-beam resonator using modified couple stress theory”, Acta Mechanica, Vol. 223, (2012), 1137-1152.

19. Gorman, D., “Free in-plane vibration analysis of rectangular plates by the method of superposition”, Journal of Sound and Vibration, Vol. 272, (2004), 831-851.

20. Wang, G. and Wereley, N.M., “Free in-plane vibration of rectangular plates”, AIAA journal, Vol. 40, (2002), 953-959.

21. Hagood, N.W. and von Flotow, A., “Damping of structural vibrations with piezoelectric materials and passive electrical networks”, Journal of Sound and Vibration, Vol. 146, (1991), 243-268.

22. Wang, L. and Yuan, F., “Vibration energy harvesting by magnetostrictive material”, Smart Materials and Structures, Vol. 17, (2008), 045009.

23. Shah-Mohammadi-Azar, A., Khanchehgardan, A., Rezazadeh, G. and Shabani, R., “Mechanical Response of a Piezoelectrically Sandwiched Nano-beam Based on the Nonlocal Theory”, International Journal of Engineering-Transactions C: Aspects, Vol. 26, (2013), 1515-1524.

24. Gorman, D., “Accurate analytical type solutions for the free in-plane vibration of clamped and simply supported rectangular plates”, Journal of sound and vibration, Vol. 276, (2004), 311-333.

25. Gorman, D., “Free in-plane vibration analysis of rectangular plates with elastic support normal to the boundaries”, Journal of Sound and Vibration, Vol. 285, (2005), 941-966.

26. Bardell, N., Langley, R. and Dunsdon, J., “On the free in-plane vibration of isotropic rectangular plates”, Journal of Sound and Vibration, Vol. 191, (1996), 459-467.

27. Kobayashi, Y., Yamada, G. and Honma, S., “In-plane vibration of point-supported rectangular plates”, Journal of Sound and Vibration, Vol. 126, (1988), 545-549.

28. Seok, J., Tiersten, H. and Scarton, H., “Free vibrations of rectangular cantilever plates. Part 2: in-plane motion”, Journal of Sound and Vibration, Vol. 271, (2004), 147-158.

29. Gutierrez, R. and Laura, P., “In-plane vibrations of thin, elastic, rectangular plates elastically restrained against translation along the edges”, Journal of Sound and Vibration, Vol. 132, (1989), 512-515.

30. Xing, Y. and Liu, B., “Exact solutions for the free in-plane vibrations of rectangular plates”, International Journal of Mechanical Sciences, Vol. 51, (2009), 246-255.

31. Du, J., Li, W.L., Jin, G., Yang, T. and Liu, Z., “An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges”, Journal of Sound and Vibration, Vol. 306, (2007), 908-927.

32. Singh, A. and Muhammad, T., “Free in-plane vibration of isotropic non-rectangular plates”, Journal of Sound and Vibration, Vol. 273, (2004), 219-231.

33. Woodcock, R.L., Bhat, R.B. and Stiharu, I.G., “Effect of ply orientation on the in-plane vibration of single-layer composite plates”, Journal of Sound and Vibration, Vol. 312, (2008), 94-108.

34. Farag, N. and Pan, J., “Free and forced in-plane vibration of rectangular plates”, The Journal of the Acoustical Society of America, Vol. 103, (1998), 408-413.

35. Dozio, L., “Free in-plane vibration analysis of rectangular plates with arbitrary elastic boundaries”, Mechanics Research Communications, Vol. 37, (2010), 627-635.

36. Andrianov, I.V., Awrejcewicz, J. and Chernetskyy, V., “Analysis of natural in-plane vibration of rectangular plates using homotopy perturbation approach”, Mathematical Problems in Engineering, Vol. 2006, (2006).

37. Liu, B. and Xing, Y., “Comprehensive exact solutions for free in-plane vibrations of orthotropic rectangular plates”, European Journal of Mechanics-A/Solids, Vol. 30, (2011), 383-395.

38. Hyde, K., Chang, J., Bacca, C. and Wickert, J., “Parameter studies for plane stress in-plane vibration of rectangular plates”, Journal of Sound and Vibration, Vol. 247, (2001), 471-487.

39. Talebian, S., Rezazadeh, G., Fathalilou, M. and Toosi, B., “Effect of temperature on pull-in voltage and natural frequency of an electrostatically actuated microplate”, Mechatronics, Vol. 20, (2010), 666-673.

40. Sadd, M.H., Elasticity: theory, applications, and numerics, Academic Press, (2009).

41. Timoshenko, S., Woinowsky-Krieger, S. and Woinowsky, S., Theory of plates and shells, McGraw-hill New York, (1959).

42. Rao, S.S., Vibration of continuous systems, John Wiley & Sons, (2007).

43. Zamanian, M. and Khadem, S., “Analysis of thermoelastic damping in microresonators by considering the stretching effect”, International Journal of Mechanical Sciences, Vol. 52, (2010), 1366-1375.

44. Rao, S.S. and Yap, F.F., Mechanical vibrations, Addison-Wesley New York, (1995).  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir