IJE TRANSACTIONS C: Aspects Vol. 28, No. 3 (March 2015) 378-386   

downloaded Downloaded: 134   viewed Viewed: 2097

D. Nezamolmolki and A. Aftabi Sani
( Received: January 04, 2014 – Accepted: November 13, 2014 )

Abstract    This article deals with the free vibration analysis and determination of the seismic parameters of a sloping-frame which consists of three members; a horizontal, a vertical, and an inclined member. The both ends of the frame are clamped, and the members are rigidly connected at joint points. The individual members of the frame are assumed to be governed by the transverse vibration theory of an Euler-Bernoulli beam. To solve this classical problem, a closed-form solution is firstly proposed and then, a numerical analysis is performed for some verification purposes. The closed-form solution is developed by solving the frame equations of motion, directly. For this reason, some mathematical techniques are utilized, such as Fourier transform and the well-known complementary solutions. In this way, some differential equations must be solved, and several boundary conditions should be satisfied. Herein, the more accurate derivation of the last boundary condition is the most important challenge of this paper. This boundary condition is expressed as three distinctive versions, and the free vibration parameters of the frame for the three versions are attained. Moreover, these results are obtained by the use of the finite element method. In this comparison process, some differences are observed between the closed-form and the numerical results. This fact motivated us to propose some modifications in the characteristic matrices of the finite element model of the frame. This modification makes the results of the Finite element method similar to the results of the first version of the closed-form solution. Finally, the natural frequencies and mode shapes are presented for a wide range of angles of the sloping member. Also, two particular cases are discussed and their boundary conditions are presented.


Keywords    Free vibration analysis, Sloping-frame, Boundary condition, Euler-Bernoulli beam, Boundary value problem



این مقاله به بررسی تحلیل ارتعاش آزاد و مشخص کردن پارامترهای دینامیکی یک قاب شیبدار می­پردازد. ابتدا، یک روش دقیق ارائه شده است و سپس به منظور صحت­سنجی، تحلیل عددی انجام گرفته است. روش دقیق بر اساس حل مستقیم معادلات حرکت قاب است. به این منظور، از برخی روش­های ریاضی مانند تبدیل فوریه و جواب کامل استفاده شده است. در این حالت، یکسری از معادلات دیفرانسیل بایستی حل شوند و شرایط مرزی نیز باید ارضا شوند. مهمترین چالش این مقاله دقیق­ترین بدست آوردن دوازدهمین شرط مرزی است. این شرط مرزی به سه صورت مجزا بدست آمده است و پارامترهای ارتعاش آزاد برای هر سه حالت بدست آمده است. علاوه­براین، این پارامترها با استفاده از روش اجزای محدود نیز بدست آمده­اند. در این جا، برخی تفاوت­ها بین نتایج حاصله مشاهده می­شود. این واقعیت ما را به انجام برخی اصلاحات در ماتریس­های ویژگی روش اجزای محدود قاب ترغیب نمود. این اصلاحات باعث یکسان شدن نتایج حاصل از روش اجزای محدود با نتایج حالت اول روش دقیق می­شود. در نهایت، فرکانس­ها طبیعی و شکل­مودهای قاب برای زوایای مختلف ارائه شده­اند



1.     Kim, H. and Kim, M., "Vibration of beams with generally restrained boundary conditions using fourier series", Journal of Sound and Vibration,  Vol. 245, No. 5, (2001), 771-784.

2.     Albarracın, C., Zannier, L. and Grossi, R., "Some observations in the dynamics of beams with intermediate supports", Journal of Sound and Vibration,  Vol. 271, No. 1, (2004), 475-480.

3.     Li, W., "Dynamic analysis of beams with arbitrary elastic supports at both ends", Journal of sound and vibration,  Vol. 246, No. 4, (2001), 751-756.

4.     Li, W.L., "Free vibrations of beams with general boundary conditions", Journal of Sound and Vibration,  Vol. 237, No. 4, (2000), 709-725.

5.     Li, W., "Comparison of fourier sine and cosine series expansions for beams with arbitrary boundary conditions", Journal of sound and vibration,  Vol. 255, No. 1, (2002), 185-194.

6.     Firouz-Abadi, R., Haddadpour, H. and Novinzadeh, A., "An asymptotic solution to transverse free vibrations of variable-section beams", Journal of sound and vibration,  Vol. 304, No. 3, (2007), 530-540.

7.     Failla, G. and Santini, A., "A solution method for euler–bernoulli vibrating discontinuous beams", Mechanics Research Communications,  Vol. 35, No. 8, (2008), 517-529.

8.     Behzad, M., Meghdari, A. and Ebrahimi, A., "A new approach for vibration analysis of a cracked beam", International Journal Of Engineering-Materials And Energy Research Center-,  Vol. 18, No. 4, (2005), 319.

9.     Mirzabeigy, A., "Semi-analytical approach for free vibration analysis of variable cross-section beams resting on elastic foundation and under axial force", International Journal of Engineering, Transactions C: Aspects,  Vol. 27, No. 3, (2014), 455-463.

10.   Ekhteraei Toussi, H., "Frequency analysis for a timoshenko beam located on an elastic foundation", International Journal of Engineering,  Vol. 24, No., (2011).

11.   Albarracín, C.M. and Grossi, R.O., "Vibrations of elastically restrained frames", Journal of sound and vibration,  Vol. 285, No. 1, (2005), 467-476.   

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir