Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 28, No. 3 (March 2015) 396-401   

downloaded Downloaded: 363   viewed Viewed: 2568

  ACTIVE SUSPENSION SYSTEM CONTROL USING ADAPTIVE NEURO FUZZY (ANFIS) CONTROLLER
 
H. Moghadam-Fard and F. Samadi
 
( Received: February 17, 2014 – Accepted: November 13, 2014 )
 
 

Abstract    The purpose of designing the active suspension systems is providing comfort riding and good handling in different road disturbances. In this paper a novel control method based on adaptive neuro fuzzy system in active suspension system is proposed. Choosing the proper data base to train the ANFIS has an important role in increasing the suspension system’s performance. The data base which is used to train the proposed ANFIS system is extracted from the outputs of fuzzy, LQR and sliding mode controllers. A quarter-car model is considered to study the performance of the proposed controller. Performance of this controller is compared with the passive system, and active suspension systems with fuzzy and LQR controllers. The results demonstrate that proposed ANFIS controller is better than passive suspension system and active fuzzy and LQR based suspension systems in suspension deflection, body acceleration, settling time and also control force.

 

Keywords    Active Suspension System, Fuzzy Logic Controller, ANFIS, Quarter Car Model

 

چکیده    هدف از طراحی یک سیستم تعلیق فعال، فراهم نمودن آسایش و راحتی برای راننده و سرنشینان اتومبیل درمواجه با ناهمواری­های جاده می­باشد. در این مقاله روش کنترلی جدیدی بر اساس سیستم استنتاج فازی عصبی تطبیقی برای سیستم تعلیق فعال پیشنهاد می­شود. تهیه و انتخاب پایگاه داده­ی مناسب برای آموزش سیستم فازی عصبی نقش مهمی را در افزایش کارایی سیستم، ایفا می­کند. پایگاه داده­ی مورد استفاده، از خروجی کنترلرهای فازی، خطی مرتبه دوم و مدلغزشی تهیه شده است. یک مدل ربع خودرو برای شبیه­سازی و بررسی کارایی سیستم پیشنهادی، درنظر گرفته شده است. عملکرد سیستم پیشنهادی با عملکرد سیستم غیرفعال و سیستم­های فعال با کنترل کننده­های فازی و خطی مرتبه دوممقایسه شده است. نتایج شبیه­سلزی­ها نشان می­دهد که کنترلر تطبیقی فازی عصبی طراحی شده از لحاظ جابجایی بدنه، شتاب بدنه، زمان نشست و نیروی کنترلی، بهتر از سیستم­های پیشین می­باشد.

References   

1.     Kaleemullah, M., Faris, W.F. and Hasbullah, F., "Design of robust h∞, fuzzy and lqr controller for active suspension of a quarter car model", in Mechatronics (ICOM), 4th International Conference On, IEEE. (2011), 1-6.

2.     Foda, S.G., "Fuzzy control of a quarter-car suspension system", in Proceedings of the 12th International Conference on Microelectronics. (2000), 231-234.

3.     Lauwerys, C., Swevers, J. and Sas, P., "Design and experimental validation of a linear robust controller for an active suspension of a quarter car", in American Control Conference, Proceedings, IEEE. Vol. 2, (2004), 1481-1486.

4.     Thompson, A., "An active suspension with optimal linear state feedback", Vehicle System Dynamics,  Vol. 5, No. 4, (1976), 187-203.

5.     Thompson, A. and Davis, B., "Optimal linear active suspensions with vibration absorbers and integral output feedback control", Vehicle System Dynamics,  Vol. 18, No. 6, (1989), 321-344.

6.     Cheok, K.C., Loh, N.-K., McGee, H.D. and Petit, T.F., "Optimal model-following suspension with microcomputerized damping", Industrial Electronics, IEEE Transactions on,  No. 4, (1985), 364-371.

7.     Esmailzadeh, E. and Taghirad, H., "Active vehicle suspensions with optimal state-feedback control", International Journal of Modelling and Simulation,  Vol. 18, No., (1998), 228-238.

8.     Aubouet, S., Dugard, L. and Sename, O., "H∞/lpv observer for an industrial semi-active suspension", Control Applications, (CCA) & Intelligent Control, (2009), 756-763.

9.     Lin, J.-S. and Kanellakopoulos, I., "Nonlinear design of active suspensions", Control Systems, IEEE,  Vol. 17, No. 3, (1997), 45-59.

10.   Sam, Y.M., Osman, J.H. and Ghani, M.R.A., "A class of proportional-integral sliding mode control with application to active suspension system", Systems & Control Letters,  Vol. 51, No. 3, (2004), 217-223.

11.   Yoshimura, T., "Active suspension of vehicle systems using fuzzy logic", International Journal of Systems Science,  Vol. 27, No. 2, (1996), 215-219.

12.   Rao, M. and Prahlad, V., "A tunable fuzzy logic controller for vehicle-active suspension systems", Fuzzy Sets And Systems,  Vol. 85, No. 1, (1997), 11-21.

13.   Campos, J., Lewis, F., Davis, L. and Ikenaga, S., "Backstepping based fuzzy logic control of active vehicle suspension systems", in American Control Conference, Proceedings of IEEE. Vol. 6, (2000), 4030-4035.

14.   Lauwerys, C., Swevers, J. and Sas, P., "Robust linear control of an active suspension on a quarter car test-rig", Control Engineering Practice,  Vol. 13, No. 5, (2005), 577-586.

15.   Park, S. and Rahmdel, S., "A new fuzzy sliding mode controller with auto-adjustable saturation boundary layers implemented on vehicle suspension", International Journal of Engineering-Transactions C: Aspects,  Vol. 26, No. 12, (2013), 1401.

16.   Bagheri, A. and Mahmoodabadi, M., "Pareto optimization of a two-degree of freedom passive linear suspension using a new multi-objective genetic algorithm (technical note)", International Journal of Engineering-Transactions A: Basics,  Vol. 24, No. 3, (2011), 291-301.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir