IJE TRANSACTIONS C: Aspects Vol. 28, No. 3 (March 2015) 402-409   

downloaded Downloaded: 524   viewed Viewed: 3417

A. Golzarfar, A. R. Sedighi and A. Asadi
( Received: July 13, 2014 – Accepted: December 18, 2014 )

Abstract    In this paper, the effect of number and fault current limiter(FCL) location has been investigated in order to have maximum reduction of short circuit current level in all buses in a real network. To do so, the faulty buses were identified in terms of short circuit current level by computing short circuits on the desired network. Then, while the fault current limit was modeled, its optimal location and amount for the greatest reduction in the fault current level of the whole critical buses was determined. Optimization computations have been done using the genetic algorithm and method of reducing the search space and all implementation stages of the proposed algorithm and reduction of search space has been conducted in DIgSILENT software using programming language DPL. The obtained results indicate the high efficiency of the proposed method in reducing the short circuit current level of faulty buses and simultaneous improving the power quality.


Keywords    Fault current limiter, Short circuit capacity, Genetic algorithms, DIgSILENT


چکیده    در این مقاله تأثیر تعداد و مکان محدود کننندههای جریان خطا در یک شبکه واقعی بررسی شده است. این امر به منظور کاهش حداکثری سطح جریان اتصال کوتاه در تمام باسها صورت گرفته است. برای این منظور ابتدا باسهایی که دارای مشکل افزایش سطح جریان اتصال کوتاه هستند بر حسب میزان افزایش سطح جریان اتصال کوتاه در شبکه مورد بررسی، شناسایی و اولویت دهی شدهاند. سپس ضمن مدلسازی محدود کنندههای جریان خطا، تعداد، مکان و میزان بهینه آنها برای کاهش حداکثری سطح جریان اتصال کوتاه در تمام باسهای دارای مشکل، تعیین شدهاند. محاسبات بهینه سازی با استفاده از الگوریتم ژنتیک صورت پذیرفته است. الگوریتم کاهش فضای جستجو و سایر محاسبات مربوطه با استفاده از فضای برنامه نویسی DPL در نرم افزار DIgSILENT، برنامه نویسی و اجرا شدهاند. نتایج، موفقیت زیاد الگوریتم پیشنهادی، در کاهش سطح جریان اتصال کوتاه باسهای دارای مشکل و به طور همزمان بهبود کیفیت توان را نشان میدهند.



1.     Ye, L., Lin, L. and Juengst, K.-P., "Application studies of superconducting fault current limiters in electric power systems", Applied Superconductivity, IEEE Transactions on,  Vol. 12, No. 1, (2002), 900-903.

2.     Salama, M., Temraz, H., Chikhani, A. and Bayoumi, M., "Fault-current limiter with thyristor-controlled impedance", Power Delivery, IEEE Transactions on,  Vol. 8, No. 3, (1993), 1518-1528.

3.     Karady, G., "Principles of fault current limitation by a resonant lc circuit", in IEE Proceedings C (Generation, Transmission and Distribution), IET. Vol. 139, (1992), 1-6.

4.     Thuries, E., Pham, V., Laumond, Y., Verhaege, T., Fevrier, A., Collet, M. and Bekhaled, M., "Towards the superconducting fault current limiter", Power Delivery, IEEE Transactions on,  Vol. 6, No. 2, (1991), 801-808.

5.     Noe, M., Juengst, K.-P., Werfel, F., Cowey, L., Wolf, A. and Elschner, S., "Investigation of high-tc bulk material for its use in resistive superconducting fault current limiters", Applied Superconductivity, IEEE Transactions on,  Vol. 11, No. 1, (2001), 1960-1963.

6.     Heydari, H., Hooshyar, H., Savaghebi, M. and Sharifi, R., "Proper dimension of hts material for a resistive type sfcl in an 11kv distribution system", in Power Engineering Society Conference and Exposition in Africa,. PowerAfrica'07. IEEE, (2007), 1-4.

7.     Noe, M. and Oswald, B., "Technical and economical benefits of superconducting fault current limiters in power systems", Applied Superconductivity, IEEE Transactions on,  Vol. 9, No. 2, (1999), 1347-1350.

8.     Heydari, H., Faghihi, F., Poursoltanmohamadi, A.H., Sharifi, R. and Goudarzi, A., "Viable superconductor-based current control circuit for high current injection system", Applied Superconductivity, IEEE Transactions on,  Vol. 19, No. 4, (2009), 3630-3636.

9.     Biswas, A., Khan, M.E. and Islam, M.R., "Enhancement of power system capacity with existing switchgear using superconducting fault current limiter", in Informatics, Electronics & Vision (ICIEV), International Conference on, IEEE. (2013), 1-5.

10.   Shimizu, H., Yokomizu, Y., Goto, M., Matsumura, T. and Murayama, N., "A study on required volume of superconducting element for flux flow resistance type fault current limiter", Applied Superconductivity, IEEE Transactions on,  Vol. 13, No. 2, (2003), 2052-2055.

11.   Kado, H. and Ickikawa, M., "Performance of a high-tc superconducting fault current limiter-design of a 6.6 kv magnetic shielding type superconducting fault current limiter", Applied Superconductivity, IEEE Transactions on,  Vol. 7, No. 2, (1997), 993-996.

12.   Lim, S.-H., Choi, H.-S., Chung, D.-C., Ko, S. and Han, B.-S., "Impedance variation of a flux-lock type sfcl dependent on winding direction between coil 1 and coil 2", Applied Superconductivity, IEEE Transactions on,  Vol. 15, No. 2, (2005), 2039-2042.

13.   Heydari, H., Faghihi, F., Sharifi, R. and Poursoltanmohammadi, A.H., "Superconducting technology for overcurrent limiting in a 25 ka current injection system", Superconductor Science and Technology,  Vol. 21, No. 9, (2008), 095016.

14.   Abbott, S., Robinson, D., Perera, S., Darmann, F., Hawley, C. and Beales, T., "Simulation of hts saturable core-type fcls for mv distribution systems", Faculty of Informatics-Papers, (2006), 424-432.

15.   Mazlumi, K. and Mousavi Motlagh, S.H., "A novel objective function for directional overcurrent relays coordination", International Journal of Engineering (IJE)-Transaction B: Application,  Vol. 28, No. 2, (2015), 212-220.

16.   Reza, S.A., Arman, G., Ghazanfar, S. and Abolfazl, A., "Improving the power quality in real network by using fault current limiter and determination of optimum impedance by the proposed algorithm", in Electrical Power Quality and Utilisation (EPQU), 11th International Conference on, IEEE. (2011), 1-6.

17.   Moon, G.-H., JAEHEE, L. and Joo, S.-K., "Integrated generation capacity and transmission network expansion planning with superconducting fault current limiter (sfcl)", IEEE Transactions on Applied Superconductivity,  Vol. 23, No. 3, (2013).

18.   Elmitwally, A., "Proposed hybrid superconducting fault current limiter for distribution systems", International Journal of Electrical Power & Energy Systems,  Vol. 31, No. 10, (2009), 619-625.

19.   " Report for northeast utilities, short circuit duty comparisons for underground transmission option using hvdc", Prepared of Electric Systems Consulting ABB Inc,  (2004).

20.   Jo, H.-C., Joo, S.-K. and Lee, K., "Optimal placement of superconducting fault current limiters (SFCLS) for protection of an electric power system with distributed generations (DGS)", Applied Superconductivity, IEEE Transactions on,  Vol. 23, No. 3, (2013), 304-321.

21.   Bera, P., Das, D. and Basu, T.K., " Tuning of excitation and tcsc -based stabilizers for multimachine power system", International Journal of Engineering-Transaction B: Application,  Vol. 23, No. 1, ( 2010), 37-52.

22.   Guilani, P.P., Sharifi, M., Niaki, S. and Zaretalab, A., "Redundancy allocation problem of a system with three-state components: A genetic algorithm", International Journal of Engineering,  Vol. 27, No. 11, (2014) 35-43.

23.   Nagata, M., Tanaka, K. and Taniguchi, H., "Fcl location selection in large scale power system", Applied Superconductivity, IEEE Transactions on,  Vol. 11, No. 1, (2001), 2489-2494.

24.   Kalsi, S.S. and Malozemoff, A., "Hts fault current limiter concept", in Power Engineering Society General Meeting, 2004. IEEE, (2004), 1426-1430.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir