Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 28, No. 3 (March 2015) 426-432   

downloaded Downloaded: 138   viewed Viewed: 2257

  FUZZY APPROXIMATION MODEL-BASED ROBUST CONTROLLER DESIGN FOR SPEED CONTROL OF BLDC MOTOR
 
M. Zolfaghari and S. A. Taher
 
( Received: January 09, 2014 – Accepted: November 14, 2014 )
 
 

Abstract    This paper presents a new controller for speed control problem of the BLDC motors. The nonlinear model of the motor is approximated by implementation of fuzzy rules. The uncertainties are considered in the fuzzy system. Using this model and linear matrix inequality (LMI) optimization, a robust controller for purpose of speed control of the motor has been designed and applied to it. The effectiveness of the designed controls demonstrated through simulation results.

 

Keywords    BLDC motor, Fuzzy approximation, Robust controller

 

چکیده    در این مقاله یک کنترل­ کننده­ ی جدید برای مساله­ ی کنترل سرعت موتورهای جریان مستقیم بدون جاروبک ارائه شده است. مدل غیرخطی موتور با استفاده از قوانین منطق فازی تقریب زده شده و عدم ­قطعیت­ ها در سیستم فازی لحاظ شده­ اند. با استفاده از این مدل و نیز با استفاده از الگوریتم بهینه­ سازی LMI ، یک کنترل­ کننده­ ی مقاوم برای کنترل سرعت موتور طراحی شده و به آن اعمال شده است. موثر بودن این رویه­ ی کنترلی در کنترل مناسب سرعت موتور با استفاده از شبیه­ سازی نشان داده شده است.

References   

1.     Savio, M. and Murugesan, S., "Space vector control scheme of three level zsi applied to wind energy systems", International Journal of Engineering-Transactions C: Aspects,  Vol. 25, No. 4, (2012), 275-282.

2.     Kebbati, Y., "Modular approach for an asic integration of electrical drive controls", International Journal of Engineering-Transactions B: Applications,  Vol. 24, No. 2, (2011), 107-118.

3.     Shaeiri, Z. and Ghaderi, R., "Modification of the fast global k-means using a fuzzy relation with application in microarray data analysis", International Journal of Engineering-Transactions C: Aspects,  Vol. 25, No. 4, (2012), 283-292.

4.     Ojaghi, M., Sabouri, M., Faiz, J. and Ghorbanian, V., "Exact modeling and simulation of saturated induction motors with broken rotor bars fault using winding function approach", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 1, (2013), 69-78.

5.     Afjei, E., Hashemipour, O., Saati, M. and Nezamabadi, M., "A new hybrid brushless dc motor/generator without permanent magnet", International Journal of Engineering Transactions B Applications,  Vol. 20, No. 1, (2007), 77-86.

6.     Kandiban, R. and Arulmozhiyal, R., "Design of adaptive fuzzy PID controller for speed control of bldc motor", International Journal of Soft Computing and Engineering,  Vol. 2, No. 1, (2012), 386-391.

7.     W. Assawinchaichote and N. Chayaopas, "Robust h∞ fuzzy speed control design for brushless dc motor", World Academy of Science, Engineering and Technology, (2013).

8.     Chen, H., Huang, M., Liaw, C., Chang, Y., Yu, P. and Huang, J., "Robust current control for brushless DC motors", IEE Proceedings-Electric Power Applications,  Vol. 147, No. 6, (2000), 503-512.

9.     Gupta, R., Kumar, R. and Bansal, A.K., "Artificial intelligence applications in permanent magnet brushless DC motor drives", Artificial Intelligence Review,  Vol. 33, No. 3, (2010), 175-186.

10.   P. Yedamale, "An885-brushless DC (BLDC) motor fundamentals", Microchip Technology Inc, (2003).

11.   Shanmugasundram, R., Zakariah, K.M. and Yadaiah, N., "Digital implementation of fuzzy logic controller for wide range speed control of brushless dc motor", in Vehicular Electronics and Safety (ICVES), 2009 IEEE International Conference on, IEEE, (2009), 119-124.

12.   Jeon, Y., Mok, H., Choe, G., Kim, D. and Ryu, J., "A new simulation model of BLDC motor with real back emf waveform", in Computers in Power Electronics, 2000. COMPEL 2000. The 7th Workshop on, IEEE, (2000), 217-220.

13.   Han, Z. and Feng, G., "State feedback H∞ controller design of fuzzy dynamic systems using lmi techniques", in Fuzzy Systems Proceedings, 1998. IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on, IEEE, Vol. 1, (1998), 538-544.

14.   Choi, J., Park, C.-W., Rhyu, S. and Sung, H., "Development and control of bldc motor using fuzzy models", in Robotics, Automation and Mechatronics, 2004 IEEE Conference on, IEEE. Vol. 2, No. Issue, (2004), 1180-1185.

15.   Chen, B.-S., Tseng, C.-S. and Uang, H.-J., "Mixed h 2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: An lmi approach", Fuzzy Systems, IEEE Transactions on,  Vol. 8, No. 3, (2000), 249-265.

16.   Assawinchaichote, W., Nguang, S.K., Shi, P. and Boukas, E.-K., "H∞ fuzzy state-feedback control design for nonlinear systems with-stability constraints: An lmi approach", Mathematics and Computers in Simulation,  Vol. 78, No. 4, (2008), 514-531.

17.   Gao, Q., Zeng, X.-J., Feng, G., Wang, Y. and Qiu, J., "Ts-fuzzy-model-based approximation and controller design for general nonlinear systems", Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,  Vol. 42, No. 4, (2012), 1143-1154.

18.   Xia, C., Fang, H., Chen, W., Xiu, J. and Shi, T., "Ant colony algorithm based fuzzy control for a brushless dc motor", in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, IEEE. Vol. 2, (2006), 6498-6502.

19.   Lee, C. and Kwok, N., "Reduced parameter variation sensitivity with a variable structure controller in brushless DC motor velocity control systems", in Industry Applications Society Annual Meeting, 1993., Conference Record of the 1993 IEEE, IEEE, (1993), 746-753.

20.   Pillay, P. and Krishnan, R., "Modeling of permanent magnet motor drives", in Robotics and IECON'87 Conferences, International Society for Optics and Photonics, (1987), 289-293.

21.   Haupt, R.L. and Haupt, S.E., "Practical genetic algorithms, John Wiley & Sons,  (2004).  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir