Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 28, No. 3 (March 2015) 440-446   

downloaded Downloaded: 242   viewed Viewed: 2925

  A NUMERICAL ANALYSIS FOR THE EFFECT OF SLIP VELOCITY AND STENOSIS SHAPE ON NON-NEWTONIAN FLOW OF BLOOD (TECHNICAL NOTE)
 
A. Bhatnagar, R. K. Shrivastav and A. K. Singh
 
( Received: December 04, 2013 – Accepted: December 18, 2014 )
 
 

Abstract    The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip velocity, stenosis height and yield stress on blood flow through a stenosed artery has been examined. The variations of wall shear stress, resistance to flow, volumetric flow rate and axial velocity with stenosis shape parameter, yield stress and slip velocity have been shown graphically. It is noticed that axial velocity and volumetric flow rate increase with slip but decrease with yield stress. This information of blood could be useful in the development of new diagnosis tools for many diseases.

 

Keywords    Stenosis, Bingham-Plastic fluid model, stenosis shape parameter, slip velocity, resistance to flow, wall shear stress.

 

چکیده    هدف از این مقاله بررسی اثر سرعت لغزش و شکل تنگی در جریان غیر نیوتنی از خون از طریق بخش شریانی تنگ است. خون به عنوان سیال بینگهام پلاستیک در یک لوله دایره ای یکنواخت با تنگی شعاعی غیر متقارن مدل شده است. مسئله با یک تلاش مشترک از تکنیک های تحلیلی و عددی بررسی شده است. تاثیر پارامتر شکل تنگی، سرعت لغزش، تنگی ارتفاع و عملکرد استرس در جریان خون از میان عروق تنگ مورد بررسی قرار گرفته است. تغییرات تنش برشی دیوار، مقاومت در برابر جریان، دبی حجمی و سرعت محوری با پارامتر شکل تنگی، عملکرد استرس و سرعت لغزش به صورت گرافیکی نشان داده شده است. این نتیجه حاصل شد که سرعت محوری و سرعت جریان حجمی با لغزش افزایش اما با استرس عملکرد کاهش یافت. این اطلاعات از خون می تواند در توسعه ابزار تشخیص جدید برای بسیاری از بیماری ها مفید باشد.

References   

 

1.     Lih, M.M.-S., "Transport phenomena in medicine and biology",  (1975).

2.     Misra, J., Patra, M. and Misra, S., "A non-newtonian fluid model for blood flow through arteries under stenotic conditions", Journal of Biomechanics,  Vol. 26, No. 9, (1993), 1129-1141.

3.     Dwyer, H., Cheer, A., Rutaganira, T. and Shacheraghi, N., "Calculation of unsteady flows in curved pipes", Journal of Fluids Engineering,  Vol. 123, No. 4, (2001), 869-877.

4.     Chakravarty, S. and Mandal, P.K., "Two-dimensional blood flow through tapered arteries under stenotic conditions", International Journal of Non-Linear Mechanics,  Vol. 35, No. 5, (2000), 779-793.

5.     Misra, J. and Shit, G., "Blood flow through arteries in a pathological state: A theoretical study", International Journal of Engineering Science,  Vol. 44, No. 10, (2006), 662-671.

6.     Jain, M., Sharma, G.C. and Sharma S.K., "A mathematical model for blood flow through narrow vessels with mild stenosis", International Journal of Engineering, Transactions B: Applications,  Vol. 22, No. 1, ( 2009), 99-106.

7.     Venkateswarlu, K. and Rao, J.A., "Numerical solution of unsteady blood flow through an indented tube with atherosclerosis", Indian Journal of Biochemistry and Biophysics,  Vol. 41, (2004), 241-245.

8.     Dash, R., Jayaraman, G. and Mehta, K., "Estimation of increased flow resistance in a narrow catheterized artery—a theoretical model", Journal of Biomechanics,  Vol. 29, No. 7, (1996), 917-930.

9.     Dash, R., Jayaraman, G. and Mehta, K., "Flow in a catheterized curved artery with stenosis", Journal of Biomechanics,  Vol. 32, No. 1, (1999), 49-61.

10.   Jayaraman, G. and Tiwari, K., "Flow in a catheterized curved artery", Medical & Biological Engineering. & Computing,  Vol. 33, (1995), 1-6.

11.   Daripa, P. and Dash, R.K., "A numerical study of pulsatile blood flow in an eccentric catheterized artery using a fast algorithm", Journal of Engineering Mathematics,  Vol. 42, No. 1, (2002), 1-22.

12.   Sankar, D., "Two-fluid nonlinear mathematical model for pulsatile blood flow through stenosed arteries", Bull. Malays. Math. Sci. Soc.(2),  Vol. 35, (2012), 487-498.

13.   Johnston, B.M., Johnston, P.R., Corney, S. and Kilpatrick, D., "Non-newtonian blood flow in human right coronary arteries: Steady state simulations", Journal of Biomechanics,  Vol. 37, No. 5, (2004), 709-720.

14.   Tu, C. and Deville, M., "Pulsatile flow of non-newtonian fluids through arterial stenoses", Journal of Biomechanics,  Vol. 29, No. 7, (1996), 899-908.

15.   Tandon, P., Rana, U., Kawahara, M. and Katiyar, V., "A model for blood flow through a stenotic tube", International Journal Of Bio-medical Computing,  Vol. 32, No. 1, (1993), 61-78.

16.   Shit, G. and Roy, M., "Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration", Journal of Mechanics in Medicine and Biology,  Vol. 11, No. 03, (2011), 643-661.

17.   Jain, M., Sharma, G.C. and Singh, R., "Mathematical modelling of blood flow in a stenosed artery under mhd effect through porous medium", International Journal of Engineering, Transactions B: Applications,  Vol. 23, No. 3 & 4, (2010).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18.   Singh, A., "Effects of shape parameter and length of stenosis on blood flow through improved generalized artery with multiple stenoses", Advances in Applied Mathematical Biosciences,  Vol. 3, No. 1, (2012), 41-48.

19.   Bali, R. and Awasthi, U., "A casson fluid model for multiple stenosed artery in the presence of magnetic field", (2012).

20.   Nanda, S. and Bose, R.K., "A mathematical model for blood flow through a narrow artery with multiple stenoses", Journal of Applied Mathematics and Fluid Mechanics,  Vol. 3, (2012), 233-242.

21.   Singh, A. and Singh, D., "Mhd flow of blood through radially non-symmetric stenosed artery: A hershcel-bulkley model (research note)", International Journal of Engineering-Transactions B: Applications,  Vol. 26, No. 8, (2013), 859-864.

22.   Srivastava, V., "Particulate suspension blood flow through stenotic arteries: Effects of hematocrit and stenosis shape", Indian Journal of Pure and Applied Mathematics,  Vol. 33, No. 9, (2002), 1353-1360.

23.   Sanyal, D. and Maji, N., "Unsteady blood flow through an indented tube with atherosclerosis", Indian Journal of Pure & Applied Mathematics,  Vol. 30, No. 10, (1999), 951-959.

24.   Haldar, K., "Effects of the shape of stenosis on the resistance to blood flow through an artery", Bulletin of Mathematical Biology,  Vol. 47, No. 4, (1985), 545-550.

25.   Brunn, P., "The velocity slip of polar fluids", Rheologica Acta,  Vol. 14, No. 12, (1975), 1039-1054.

26.   Chaturani, P. and Biswas, D., "A comparative study of poiseuille flow of a polar fluid under various boundary conditions with applications to blood flow", Rheologica Acta,  Vol. 23, No. 4, (1984), 435-445.

27.   Misra, J. and Kar, B., "Momentum integral method for studying flow characteristics of blood through a stenosed vessel", Biorheology,  Vol. 26, No. 1, (1988), 23-35.

28.   Misra, J. and Shit, G., "Role of slip velocity in blood flow through stenosed arteries: A non-newtonian model", Journal of Mechanics in Medicine and Biology,  Vol. 7, No. 03, (2007), 337-353.

29.           Mallik, B.B., Nanda, S., Das, B., Saha, D., Das, D.S. and Paul, K., "A non-newtonian fluid model for blood flow using power-law through an atherosclerotic arterial segment having slip velocity", International Journal of Pharmaceutical, Chemical and Biological Sciences,  Vol. 3, No. 3, (2013), 752-760.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir