IJE TRANSACTIONS C: Aspects Vol. 28, No. 3 (March 2015) 447-453   

downloaded Downloaded: 286   viewed Viewed: 2652

R. Nikoi, M. M. Sheikhi and N. Bani Mostafa Arab
( Received: November 07, 2014 – Accepted: December 18, 2014 )

Abstract    In the present study, method of ultrasonic welding of plastics is used to join the overlap of Polypropylene composites reinforced with glass fiber. The effects of process parameters, including time, pressure, vibration amplitude and amount of glass in composite on strength of welds. To reduce the number of tests and cost, the effect of changing parameters on strength was examined through Box-Behnken test by considering four factors at three levels and parameters were optimized to obtain the highest level of strength. The results of present study showed that maximum failure force is about 2.30 KN, and it is observed when air pressure is 1.5 times more, and amplitude is close to more than 32 micron (more than average), length of welding is 0.4 second and amount of glass used is about 10 percent.


Keywords    Welding, Ultrasonic Weld, Polypropylene Composite, Surface Response Methodology, Weld Failure Force


چکیده    کامپوزيت‌های زمينه پليمری به علت وجود مزايای بسياری مانند مقاومت در برابر خوردگی، خواص مکانيکی مناسب و هزينه ساخت پايين بطور گسترده در صنايع مختلف و تکنولوژی مدرن بکار برده می‌شوند. جوشکاری التراسونیک يکی از روش‌های نوين جوشکاری حالت جامد است که در سال‌های اخير پيشرفت‌های قابل توجهی در آن صورت گرفته است. در اين تحقیق از اين نوع جوشکاری پيشرفته برای اتصال لبه رويهم کامپوزيت پلی‌پروپيلنی تقویت شده با الياف شيشه استفاده شده است. استحکام کشش- برش اتصالات در شرایط گوناگون ازجمله زمان ،فشار، دامنه ارتعاش ومقدار الیاف شیشه موجود درکامپوزیت ،مورد بررسی قرار گرفت. به منظور کاهش تعداد آزمايشات و هزينه، اثرتغییر پارامترها بر استحکام ، به کمک روش طراحی آزمایش RSM (Responce Surface Method) با درنظرگرفتن چهارفاکتورسه سطحی مورد بررسی قرار گرفت. نتايج تحقيق نشان داد که زمان، دامنه و فشار به ترتيب بيشترين تاثير را بر استحکام جوش دارند ونیز مقدار الیاف شیشه تاثیر بسزایی براستحکام می­گذارد.



1.     Offringa, A.R., "Thermoplastic composites—rapid processing applications", Composites Part A: Applied Science and Manufacturing,  Vol. 27, No. 4, (1996), 329-336.

2.     Iyer, S.R. and Drzal, L.T., "Manufacture of powder-impregnated thermoplastic composites", Journal of Thermoplastic Composite Materials,  Vol. 3, No. 4, (1990), 325-355.

3.     Hufenbach, W., Böhm, R., Thieme, M., Winkler, A., Mader, E., Rausch, J. and Schade, M., "Polypropylene/glass fibre 3D-textile reinforced composites for automotive applications", Materials & Design,  Vol. 32, No. 3, (2011), 1468-1476.

4.     Ghaseminejhad, M. and Parvizi-Majidi, A., "Impact behaviour and damage tolerance of woven carbon fibre-reinforced thermoplastic composites", Construction and Building Materials,  Vol. 4, No. 4, (1990), 194-207.

5.     Thomason, J., "Micromechanical parameters from macromechanical measurements on glass reinforced polypropylene", Composites Science and Technology,  Vol. 62, No. 10, (2002), 1455-1468.

6.     Vina, J., Arguelles, A. and Canteli, A., "Influence of temperature on the fatigue behaviour of glass fibre reinforced polypropylene", Strain,  Vol. 47, No. 3, (2011), 222-226.

7.     Seo, Y., Kim, J., Kim, K.U. and Kim, Y.C., "Study of the crystallization behaviors of polypropylene and maleic anhydride grafted polypropylene", Polymer,  Vol. 41, No. 7, (2000), 2639-2646.

8.     Hamada, H., Fujihara, K. and Harada, A., "The influence of sizing conditions on bending properties of continuous glass fiber reinforced polypropylene composites", Composites Part A: Applied Science and Manufacturing,  Vol. 31, No. 9, (2000), 979-990.

9.     Mader, E. and Freitag, K., "Interface properties and their influence on short fibre composites", Composites,  Vol. 21, No. 5, (1990), 397-402.

10.   Kim, J.-K. and Sham, M.-L., "Impact and delamination failure of woven-fabric composites", Composites Science and Technology,  Vol. 60, No. 5, (2000), 745-761.

11.   Yousefpour, A., Hojjati, M. and Immarigeon, J.-P., "Fusion bonding/welding of thermoplastic composites", Journal of Thermoplastic Composite Materials,  Vol. 17, No. 4, (2004), 303-341.

12.   Benatar, A. and Gutowski, T.G., "Ultrasonic welding of peek graphite APC2 composites", Polymer Engineering & Science,  Vol. 29, No. 23, (1989), 1705-1721.

13.   Dai, X. and Bates, P., "Mechanical properties of vibration welded short-and long-glass-fiber-reinforced polypropylene", Composites Part A: Applied Science and Manufacturing,  Vol. 39, No. 7, (2008), 1159-1166.

14.   Payganeh, G., Arab, N.M., Asl, Y.D., Ghasemi, F. and Boroujeni, M.S., "Effects of friction stir welding process parameters on appearance and strength of polypropylene composite welds", International Journal of the Physical Sciences,  Vol. 6, No. 19, (2011), 4595-4601.

15.   Ahmadi, H., "Experimental analysis of effects of FSW parameters on mechanical properties of PP composites", M.S Dissertation, Tarbiat Dabir University of Shahid Rajaee, (1391)-in Persian.

16.   Tsujino, J., Ueoka, T., Hasegawa, K., Fujita, Y., Shiraki, T., Okada, T. and Tamura, T., "New methods of ultrasonic welding of metal and plastic materials", Ultrasonics,  Vol. 34, No. 2, (1996), 177-185.

17.   Tsujino, J., Hidai, K., Hasegawa, A., Kanai, R., Matsuura, H., Matsushima, K. and Ueoka, T., "Ultrasonic butt welding of aluminum, aluminum alloy and stainless steel plate specimens", Ultrasonics,  Vol. 40, No. 1, (2002), 371-374.

18.   Born, C., Kuckert, H., Wagner, G. and Eifler, D., "Ultrasonic torsion welding of sheet metals to cellular metallic materials", Advanced Engineering Materials,  Vol. 5, No. 11, (2003), 779-786.

19.   Kruger, S., Wagner, G. and Eifler, D., "Ultrasonic welding of metal/composite joints", Advanced Engineering Materials,  Vol. 6, No. 3, (2004), 157-159.

20.   Balle, F., Wagner, G. and Eifler, D., "Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer–joints", Materialwissenschaft und Werkstofftechnik,  Vol. 38, No. 11, (2007), 934-938.

21.   Elangovan, S., Prakasan, K. and Jaiganesh, V., "Optimization of ultrasonic welding parameters for copper to copper joints using design of experiments", The International Journal of Advanced Manufacturing Technology,  Vol. 51, No. 1-4, (2010), 163-171.

22.   Ling, S.-F., Luan, J., Li, X. and Ang, W.L.Y., "Input electrical impedance as signature for nondestructive evaluation of weld quality during ultrasonic welding of plastics", NDT & E International,  Vol. 39, No. 1, (2006), 13-18.

23.   Suresh, K., Rani, M.R., Prakasan, K. and Rudramoorthy, R., "Modeling of temperature distribution in ultrasonic welding of thermoplastics for various joint designs", Journal of Materials Processing Technology,  Vol. 186, No. 1, (2007), 138-146.

24.   Rani, M.R. and Rudramoorthy, R., "Computational modeling and experimental studies of the dynamic performance of ultrasonic horn profiles used in plastic welding", Ultrasonics,  Vol. 53, No. 3, (2013), 763-772.

25.   Carboni, M., "Failure analysis of two aluminium alloy sonotrodes for ultrasonic plastic welding", International Journal of Fatigue,  Vol. 26, (2013), 132-139.

26.   Hosseinpour, M., Najafpour, G., Younesi, H., Khorrami, M. and Vaseghi, Z., "Lipase production in solid state fermentation using aspergillus niger: Response surface methodology", International Journal of Engineering,  Vol. 25, No. 3, (2012), 151-159.

27.   Chandrasekaran, K., Marimuthu, P. and Raja, K., "Prediction model for cnc turning on aisi316 with single and multilayered cutting tool using box behnken design (research note)", International Journal of Engineering-Transactions A: Basics,  Vol. 26, No. 4, (2012), 401-410.

28.   Rajabi, A. and Kadkhodayan, M., "An investigation into the deep drawing of fiber-metal laminates based on glass fiber reinforced polypropylene", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 3, (2013), 349-358.

29.   Wang, X., Song, X., Jiang, M., Li, P., Hu, Y., Wang, K. and Liu, H., "Modeling and optimization of laser transmission joining process between pet and 316l stainless steel using response surface methodology", Optics & Laser Technology,  Vol. 44, No. 3, (2012), 656-663.

30.   Dosser, L., Hix, K., Hartke, K., Vaia, R. and Li, M., "Transmission welding of carbon nanocomposites with direct-diode and nd: Yag solid state lasers", in Lasers and Applications in Science and Engineering, International Society for Optics and Photonics, (2004), 465-474.

31.   Chavez-Valencia, L., Manzano-Ramírez, A., Luna-Barcenas, G. and Alonso-Guzmán, E., "Modelling of the performance of asphalt pavement using response surface methodology", Building and Environment,  Vol. 40, No. 8, (2005), 1140-1149.

32.   Forsberg, J. and Nilsson, L., "Evaluation of response surface methodologies used in crashworthiness optimization", International Journal of Impact Engineering,  Vol. 32, No. 5, (2006), 759-777.

33.   Cowpe, J., Astin, J., Pilkington, R. and Hill, A., "Application of response surface methodology to laser-induced breakdown spectroscopy: Influences of hardware configuration", Spectrochimica Acta Part B: Atomic Spectroscopy,  Vol. 62, No. 12, (2007), 1335-1342.

34.   Benyounis, K., Olabi, A. and Hashmi, M., "Effect of laser welding parameters on the heat input and weld-bead profile", Journal of Materials Processing Technology, Vol. 164, (2005), 978-985.

35.   Montgomery, D.C., "Design and analysis of experiments, John Wiley & Sons,  (2008).

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir