IJE TRANSACTIONS C: Aspects Vol. 28, No. 3 (March 2015) 460-466   

downloaded Downloaded: 266   viewed Viewed: 2255

M. A. Ardekani, F. Farhani, M. Mazidi and M. A. Ranjbar
( Received: November 09, 2013 – Accepted: December 18, 2014 )

Abstract    Wind affects adversely the cooling tower thermal performance. A field investigation was carried out to study the thermal performance of Heller cooling towers under wind conditions, involving measurement of wind velocity and its direction around the cooling tower, and obtaining water flow rates and temperatures at the cooling tower inlet and outlet. Results show that air suction at the tower top prevents flow separation at tower periphery. Additionally, due to better airflow distribution over the front cooling sectors, perpendicular to wind direction, the thermal efficiency is improved compared to the sectors on the tower periphery, parallel to wind direction, resulting in about 20% more heat transfer. Moreover, the thermal performance of the front sectors improves with increase in the wind velocity, while it decreases with increase in the wind velocity for the periphery sectors and those at the back of the tower.


Keywords    Cross wind velocity, Cooling tower, Field measurements, Thermal performance, Wind direction


چکیده    وزش باد تاثير نامطلوبي بر عملکرد حرارتي برجهاي خنک کن هلر دارد. در اين بررسي يک مطالعه ميداني بر روي عملکرد حرارتي برجهاي خنک کن خشک هلر تحت شرايط مختلف وزش باد انجام گرفته است و سرعت وزش باد در اطراف برج خنک کن و دبي و دماي آب ورودي و خروجي از برج اندازه گيري شده است. نتايج بدست آمده نشان مي دهد که مکش هوا توسط برج مانع از وقوع پديده جدايش در اطراف برج در قسمت قرارگرفتن رادياتورها مي گردد. علاوه بر اين نتايج بيانگر اين مطلب است که راندمان رادياتورهاي قرار گرفته در سمت رو به باد، با افزايش سرعت باد افزايشي حدود 20% را داشته ولي در عوض راندمان رادياتورهاي قرار گرفته در کناره هاي برج که مماس بر جهت وزش باد هستند و همچنين رادياتورهاي پشت به باد که در قسمت پشت برج قرار گرفته اند کاهش راندمان دارند


1.     Su, M., Tang, G. and Fu, S., "Numerical simulation of fluid flow and thermal performance of a dry-cooling tower under cross wind condition", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 79, No. 3, (1999), 289-306.

2.     Song, F. and Zhiqiang, Z., "Numerical investigation of the adverse effect of wind on the heat transfer performance of two natural draft cooling towers in tandem arrangement", Acta Mechanica Sinica,  Vol. 17, No. 1, (2001), 24-34.

3.     Bender, T., Bergstrom, D. and Rezkallah, K., "A study on the effects of wind on the air intake flow rate of a cooling tower: Part 2. Wind wall study", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 64, No. 1, (1996), 61-72.

4.     Al-Waked, R. and Behnia, M., "The effect of windbreak walls on the thermal performance of natural draft dry cooling towers", Heat Transfer Engineering,  Vol. 26, No. 8, (2005), 50-62.

5.     Wei, Q.-d., Zhang, B.-y., Liu, K.-q., Du, X.-d. and Meng, X.-z., "A study of the unfavorable effects of wind on the cooling efficiency of dry cooling towers", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 54, No., (1995), 633-643.

6.     Amur, G., Milton, B., Reizes, J., Madadnia, J., Beecham, S., Brady, P. and Koosha, H., "Role of plant buildings in a power station acting as barrier to the wind affecting the natural draft cooling tower performance", in 15th Australasian Fluid Mechanics Conference, Sydney. (2004).

7.     Ardekani, M.A. and Ranjbar, M.A., "Field study on airflow pattern through radiator of heller dry cooling tower", Modares Mechanical Engineering,  Vol. 13, No. 11, (2014), 30-40.

8.     Ardekani, M.A., Farhani, F. and Mazidi, M., "Effects of cross wind conditions on efficiency of heller dry cooling tower", Experimental Heat Transfer,  Vol. 28, No. 4, (2015), 344-353.

9.     Kumar, N. and Pant, A., "A computational approach to the flow of walter’s liquid b′ through annulus of coaxial porous circular cylinders for high suction parameter (research note)", International Journal of Engineering-Transactions A: Basics,  Vol. 22, No. 2, (2008), 119-124.

10.   Heidarinejad, G. and Delfani, S., "Direct numerical simulation of the wake flow behind a cylinder using random vortex method in medium to high reynolds numbers", International Journal of Engineering,  Vol. 13, No. 3, (2000), 33-50.

11.   Mirzaee, B., Khoshravan, E. and Razavi, S., "Finite-volume solution of a cylinder in cross flow with heat transfer", Algorithms,  Vol. 3, (2002), 303-314.

12.   Madad-Nia, J., Koosha, H. and Mirzaei, M., "Effect of wind break walls on performance of a cooling tower model", Mech. Aerospace Eng. J,  Vol. 3, No., (2008), 61-67.

13.   Eldredge, T., Benton, D. and Hodgson, J., "An investigation of the effects of flue gas injection on natural draft cooling tower performance", Journal of engineering for gas turbines and power,  Vol. 119, No. 2, (1997), 478-484.

14.   Wang, K., Sun, F.-z., Zhao, Y.-b., Gao, M. and Ruan, L., "Experimental research of the guiding channels effect on the thermal performance of wet cooling towers subjected to crosswinds–air guiding effect on cooling tower", Applied Thermal Engineering,  Vol. 30, No. 5, (2010), 533-538.

15.   Lefebvre, M., "Applied probability and statistics, Springer Science & Business Media,  (2007).

16.   The Heller Systems, R.N.-L., EGI, Budapest, Hungry, (1984).

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir