Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 28, No. 3 (March 2015) 467-475   

downloaded Downloaded: 132   viewed Viewed: 1549

  EFFECT OF DEFLECTED MEMBRANE ELECTRODE ASSEMBLY ON SPECIES DISTRIBUTION IN PEMFC
 
A.Torkavannejad, M. Pesteei, M. Khalilian, F. Ramin and I. Mirzaee
 
( Received: July 05, 2013 – Accepted: June 26, 2014 )
 
 

Abstract    This article presents the results of a numerical study, using computational fluid dynamics (CFD) analysis to investigate the species distribution of proton exchange membrane fuel cells (PEMFCs) with deflected membrane electrode assembly (MEA). These new geometry were examined while employing three-dimensional, single phase, non-isothermal and parallel flow for model of a PEM fuel cell. This numerical research has concentrated on the effect of new kind of deflected MEA while maintaining the same inlet and boundary condition. Initially the CFD result of polarization curve has been validated with the available experimental data and shown good concord then studied deflected and flatted MEA at cathode and anode side. Investigation showed better results for the PEMFC with having both flatted and deflected MEA at cathode side than base model because of having more reacting area, uniform distribution of reactants, better oxygen transportation to the GDL at shoulder region and having less Cathode Overpotential (COP) which is the main causes of losses.

 

Keywords    Keywords Deflection; Fuel cell performance, PEM fuel cells, Single-phase

 

چکیده    این مقاله نتایج حاصل از یک مطالعه عددی رابا استفاده از انالیز دینامیک سیالات محاسباتی برای بدست اوردن توزیع گونه ها و افت های پیل سوختی غشا پروتونی با مجموعه غشا مورب شده را مورد مطالعه قرار دهد.این هندسه های جدید در حالی بررسی شده اند که برای مدل پیل سوختی غشا پروتونی حالت سه بعدی،تک فاز، غیر هم دما و جریان موازی به کار گرفته شده است.این پژوهش عددی روی تاثیر حالت های جدیدی از مجموعه غشا مورب شده با حفظ مساحت ورودی و شرایط مرزی متمرکز شده است.در ابتدا نتیجه CFD منحنی قطبش با داده های ازمایشی موجود که توافق خوبی نشان داده است اعتبار دهی شده و سپس مجموعه غشا دارای سطح مورب شده در هر دو طرف کاتد و اند مورد مطالعه قرار گرفته شده است.بررسی، نتایج بهتری را برای حالتی که مجموعه غشا به سمت کاتد مورب شده به دلیل داشتن منطقه واکنش بیشتر، توزیع یکنواخت تر واکنش دهنده ها، حمل اکسیژن بهتر به لایه پخش گاز در منطقه شانه و داشتن پتانسیل اضافی کمتر در سمت کاتد که اصلی ترین تلفات متوجه ان می باشد نشان می دهد.

References   

 

1.     M. Mardi Kolur, S. Khalil Arya, Jafarmadar, S. and A. Nemati, "Hydrgen and ethanol as potential alterbative fuel compared to gasoline under improved exhaust gas recirculation.", International Journal of engineering,  Vol. 27, No. 3, (2014), 449-456.

2.     Xing, X.Q., Lum, K.W., Poh, H.J. and Wu, Y.L., "Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells", Journal of Power Sources,  Vol. 195, No. 1, (2010), 62-68.

3.     Chang, W., Hwang, J., Weng, F. and Chan, S., "Effect of clamping pressure on the performance of a pem fuel cell", Journal of Power Sources,  Vol. 166, No. 1, (2007), 149-154.

4.     Rho, Y.W., Srinivasan, S. and Kho, Y.T., "Mass transport phenomena in proton exchange membrane fuel cells using o 2/he, o 2/ar, and o 2/n 2 mixtures ii. Theoretical analysis", Journal of the Electrochemical Society,  Vol. 141, No. 8, (1994), 2089-2096.

5.     Amphlett, J.C., Baumert, R., Mann, R.F., Peppley, B.A., Roberge, P.R. and Harris, T.J., "Performance modeling of the ballard mark iv solid polymer electrolyte fuel cell i. Mechanistic model development", Journal of the Electrochemical Society,  Vol. 142, No. 1, (1995), 1-8.

6.     Mosdale, R. and Srinivasan, S., "Analysis of performance and of water and thermal management in proton exchange membrane fuel cells", Electrochimica Acta,  Vol. 40, No. 4, (1995), 413-421.

7.     Oetjen, H.F., Schmidt, V., Stimming, U. and Trila, F., "Performance data of a proton exchange membrane fuel cell using h 2/co as fuel gas", Journal of the Electrochemical Society,  Vol. 143, No. 12, (1996), 3838-3842.

8.     Buchi, F.N. and Srinivasan, S., "Operating proton exchange membrane fuel cells without external humidification of the reactant gases fundamental aspects", Journal of the Electrochemical Society,  Vol. 144, No. 8, (1997), 2767-2772.

9.     Uribe, F.A., Gottesfeld, S. and Zawodzinski, T.A., "Effect of ammonia as potential fuel impurity on proton exchange membrane fuel cell performance", Journal of the Electrochemical Society,  Vol. 149, No. 3, (2002), 293-296.

10.   Ticianelli, E.A., Derouin, C.R. and Srinivasan, S., "Localization of platinum in low catalyst loading electrodes to to attain high power densities in spe fuel cells", Journal of electroanalytical chemistry and interfacial electrochemistry,  Vol. 251, No. 2, (1988), 275-295.

11.   Natarajan, D. and Van Nguyen, T., "A two-dimensional, two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors", Journal of the Electrochemical Society,  Vol. 148, No. 12, (2001), A1324-A1335.

12.   Lin, G. and Van Nguyen, T., "A two-dimensional two-phase model of a pem fuel cell", Journal of the Electrochemical Society,  Vol. 153, No. 2, (2006), 372-382.

13.   Lum, K.W. and McGuirk, J.J., "Three-dimensional model of a complete polymer electrolyte membrane fuel cell–model formulation, validation and parametric studies", Journal of Power Sources,  Vol. 143, No. 1, (2005), 103-124.

14.   Ahmed, D.H. and Sung, H.J., "Effects of channel geometrical configuration and shoulder width on pemfc performance at high current density", Journal of Power Sources,  Vol. 162, No. 1, (2006), 327-339.

15.   Torkavannejad, A., pesteei, m., Mirzaeei, I. and Ramin, I., "Effect of innovative channel geometry and its effect o species distribution in pemfc", Journal of renewable energy and environment,  Vol. 1, No., (2014), 20-31.

16.   Ahmadi, N., Rezazadeh, S., Mirzaee, I. and Pourmahmoud, N., "Three-dimensional computational fluid dynamic analysis of the conventional pem fuel cell and investigation of prominent gas diffusion layers effect", Journal of mechanical science and technology,  Vol. 26, No. 8, (2012), 2247-2257.

17.   Ge, S.-H. and Yi, B.-L., "A mathematical model for pemfc in different flow modes", Journal of Power Sources,  Vol. 124, No. 1, (2003), 1-11.

18.   Sun, L., Oosthuizen, P.H. and McAuley, K.B., "A numerical study of channel-to-channel flow cross-over through the gas diffusion layer in a pem-fuel-cell flow system using a serpentine channel with a trapezoidal cross-sectional shape", International journal of thermal sciences,  Vol. 45, No. 10, (2006), 1021-1026.

19.   Guvelioglu, G.H. and Stenger, H.G., "Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells", Journal of Power Sources,  Vol. 147, No. 1, (2005), 95-106.

20.   Chiang, M.-S. and Chu, H.-S., "Numerical investigation of transport component design effect on a proton exchange membrane fuel cell", Journal of Power Sources,  Vol. 160, No. 1, (2006), 340-352.

21.   Jung, H.-M., Lee, W.-Y., Park, J.-S. and Kim, C.-S., "Numerical analysis of a polymer electrolyte fuel cell", International journal of hydrogen energy,  Vol. 29, No. 9, (2004), 945-954.

22.   Shimpalee, S., Lee, W.-K., Van Zee, J. and Naseri-Neshat, H., "Predicting the transient response of a serpentine flow-field pemfc: I. Excess to normal fuel and air", Journal of Power Sources,  Vol. 156, No. 2, (2006), 355-368.

23.   Weng, F.-B., Su, A., Jung, G.-B., Chiu, Y.-C. and Chan, S.-H., "Numerical prediction of concentration and current distributions in pemfc", Journal of Power Sources,  Vol. 145, No. 2, (2005), 546-554.

24.   Su, A., Chiu, Y. and Weng, F., "The impact of flow field pattern on concentration and performance in pemfc", International journal of energy research,  Vol. 29, No. 5, (2005), 409-425.

25.   Ahmed, D.H. and Sung, H.J., "Design of a deflected membrane electrode assembly for pemfcs", International Journal of Heat and Mass Transfer,  Vol. 51, No. 21, (2008), 5443-5453.

26.   Arbabi, F., Roshandel, R. and Moghaddam, G.K., "Numerical modeling of an innovative bipolar plate design based on the leaf venation patterns for pem fuel cells", International Journal of engineering,  Vol. 25, No. 3, (2012), 177-186.

27.   Fuller, E.N., Schettler, P.D. and Giddings, J.C., "New method for prediction of binary gas-phase diffusion coefficients", Industrial & Engineering Chemistry,  Vol. 58, No. 5, (1966), 18-27.

28.   Berning, T., Lu, D.M. and Djilali, N., "Three-dimensional computational analysis of transport phenomena in a pem fuel cell", Journal of Power Sources,  Vol. 106, No. 1, (2002), 284-294.

29.   Wang, L., Husar, A., Zhou, T. and Liu, H., "A parametric study of pem fuel cell performances", International journal of hydrogen energy,  Vol. 28, No. 11, (2003), 1263-1272.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir