Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 823-831    Article in Press

downloaded Downloaded: 308   viewed Viewed: 2153

  A NEW APPROACH FOR DETERMINATION OF NECK-PORE SIZE DISTRIBUTION OF POROUS MEMBRANES VIA BUBBLE POINT DATA
 
M. Arjmandi, O. Pirouzram and A. Ahmadpour
 
( Received: July 19, 2014 – Accepted: May 02, 2015 )
 
 

Abstract    Reliable estimation of the porous membranes neck-pore size distribution (NPSD) is the key element in the design and operation of all membrane separation processes. In this paper, a new approach is presented for reliable of NPSD of porous membranes using wet flow-state bubble point test data. For this purpose, a robust method based on the linear regularization theory is developed to extract NPSD of membranes from bubble point test data. The performance of the proposed method is tested using various experimental data. The predicted results clearly demonstrate that the proposed method can successfully predict the proper NPSD from a set of bubble point test data.

 

Keywords    Membrane; NPSD; regularization; cross-validation.

 

چکیده    تخمین قابل اعتماد توزیع سایز گردنه غشاها عنصر اصلی در طراحی و عملکرد همه فرایندهای جداسازی غشایی است. در این مقاله، یک رویکرد جدید برای تعیین قابل اعتماد توزیع اندازه گردنه حفرات غشاهای متخلخل با استفاده از داده‌های آزمایشگاهی حالت جریان تر ارائه داده شده است. برای این منظور، یک روش قدرتمند بر پایه تئوری ریگولاریزاسیون خطی برای به دست آوردن توزیع اندازه گردنه حفرات غشاها به کمک داده‌های آزمایش نقطه حباب گسترش داده شده است. کارایی این روش ارائه شده با استفاده از داده های آزمایشگاهی مختلف مورد آزمایش قرار گرفته است. نتایج پیش بینی شده به طور واضح نشان می دهد که این روش پیشنهادی به طور موفقیت آمیز می تواند توزیع اندازه منافذ قابل قبولی به کمک مجموعه ای از داده های آزمایش نقطه حباب پیش بینی کند.

References   

 

1.     Sahimi, M. and Tsotsis, T.T., "Molecular pore network models of nanoporous materials", Physica B: Condensed Matter,  Vol. 338, No. 1, (2003), 291-297.

2.     Steriotis, T., Mitropoulos, A., Kanellopoulos, N., Keiderling, U. and Wiedenmann, A., "Characterization of an alumina membrane by neutron scattering and other techniques", Physica B: Condensed Matter,  Vol. 234, No., (1997), 1016-1018.

3.     Fang, Y., Bian, L., Bi, Q., Li, Q. and Wang, X., "Evaluation of the pore size distribution of a forward osmosis membrane in three different ways", Journal of Membrane Science,  Vol. 454, No., (2014), 390-397.

4.     Bechhold, H., Schlesinger, M., Silbereisen, K., Maier, L. and Nurnberger, W., "Pore diameters of ultrafilters", Kolloid Z,  Vol. 55, (1931), 172-198.

5.     Carretero, P., Molina, S., Lozano, A., de Abajo, J., Calvo, J.I., Prádanos, P., Palacio, L. and Hernández, A., "Liquid–liquid displacement porosimetry applied to several mf and uf membranes", Desalination,  Vol. 327, (2013), 14-23.

6.     Antón, E., Calvo, J.I., Álvarez, J.R., Hernández, A. and Luque, S., "Fitting approach to liquid–liquid displacement porosimetry based on the log-normal pore size distribution", Journal of Membrane Science,  Vol. 470, (2014), 219-228.

7.     Honold, E. and Skau, E.L., "Application of mercury-intrusion method for determination of pore-size distribution to membrane filters", Science,  Vol. 120, No. 3124, (1954), 805-806.

8.     Stefanopoulos, K., Steriotis, T.A., Mitropoulos, A.C., Kanellopoulos, N. and Treimer, W., "Characterisation of porous materials by combining mercury porosimetry and scattering techniques", Physica B: Condensed Matter,  Vol. 350, No. 1, (2004), E525-E527.

9.     Riedel, C. and Spohr, R., "Transmission properties of nuclear track filters", Journal of Membrane Science,  Vol. 7, No. 2, (1980), 225-234.

10.   Clarke, D., "Review: Transmission scanning electron microscopy", Journal of Materials Science,  Vol. 8, No. 2, (1973), 279-285.

11.   Binnig, G., Quate, C.F. and Gerber, C., "Atomic force microscope", Physical review letters,  Vol. 56, No. 9, (1986).

12.   Meyer, E., "Atomic force microscopy", Progress in surface science,  Vol. 41, No. 1, (1992), 3-49.

13.   Sarbolouki, M., "A general diagram for estimating pore size of ultrafiltration and reverse osmosis membranes", Separation Science and Technology,  Vol. 17, No. 2, (1982), 381-386.

14.   Dollimore, D. and Heal, G., "An improved method for the calculation of pore size distribution from adsorption data", Journal of Applied Chemistry,  Vol. 14, No. 3, (1964), 109-114.

15.   Lloyd, D.R., "Materials science of synthetic membranes",  (1985).

16.   Brun, M., Lallemand, A., Quinson, J.-F. and Eyraud, C., "A new method for the simultaneous determination of the size and shape of pores: The thermoporometry", Thermochimica acta,  Vol. 21, No. 1, (1977), 59-88.

17.   Mey-Marom, A. and Katz, M., "Measurement of active pore size distribution of microporous membranes-a new approach", Journal of Membrane Science,  Vol. 27, No. 2, (1986), 119-130.

18.   Cuperus, F., Bargeman, D. and Smolders, C., "Permporometry: The determination of the size distribution of active pores in uf membranes", Journal of Membrane Science,  Vol. 71, No. 1, (1992), 57-67.

19.   Glaves, C.L. and Smith, D.M., "Membrane pore structure analysis via nmr spinlattice relaxation experiments", Journal of Membrane Science,  Vol. 46, No. 2, (1989), 167-184.

20.   Hassan, J., "Pore size distribution calculation from 1 h nmr signal and n 2 adsorption–desorption techniques", Physica B: Condensed Matter,  Vol. 407, No. 18, (2012), 3797-3801.

21.   Agarwal, C., Pandey, A.K., Das, S., Sharma, M.K., Pattyn, D., Ares, P. and Goswami, A., "Neck-size distributions of through-pores in polymer membranes", Journal of Membrane Science,  Vol. 415, No., (2012), 608-615.

22.   Fang, Y., Tolley, H.D. and Lee, M.L., "Simple capillary flow porometer for characterization of capillary columns containing packed and monolithic beds", Journal of Chromatography A,  Vol. 1217, No. 41, (2010), 6405-6412.

23.   Piątkiewicz, W., Rosiński, S., Lewińska, D., Bukowski, J. and Judycki, W., "Determination of pore size distribution in hollow fibre membranes", Journal of Membrane Science,  Vol. 153, No. 1, (1999), 91-102.

24.   Morozov, V.A., Nashed, Z. and Aries, A., "Methods for solving incorrectly posed problems, Springer New York,  (1984).

25.   Phillips, D.L., "A technique for the numerical solution of certain integral equations of the first kind", Journal of the ACM (JACM),  Vol. 9, No. 1, (1962), 84-97.

26.   Tikhonov, A.N., Arsenin, V.I.A.k. and John, F., "Solutions of ill-posed problems, Winston Washington, DC,  (1977).

27.   Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical recipes in fortran (cambridge. 1992, Cambridge Univ. Press.

28.   Shahsavand, A. and Shahrak, M.N., "Direct pore size distribution estimation of heterogeneous nano-structured solid adsorbents from condensation data: Condensation with no prior adsorption", Colloids and Surfaces A: Physicochemical and Engineering Aspects,  Vol. 378, No. 1, (2011), 1-13.

29.   Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P. and Greenwell Yanik, E., "Numerical recipes in fortran--the art of scientific computing", SIAM Review,  Vol. 36, No. 1, (1994), 149-149.

30.   Ahmadian, H., Mottershead, J. and Friswell, M., "Regularisation methods for finite element model updating", Mechanical Systems and Signal Processing,  Vol. 12, No. 1, (1998), 47-64.

31.   Krakauer, N.Y., Schneider, T., Randerson, J.T. and Olsen, S.C., "Using generalized crossvalidation to select parameters in inversions for regional carbon fluxes", Geophysical research letters,  Vol. 31, No. 19, (2004).

32.   Yagola, A. and Titarenko, V., "Numerical methods and regularization techniques for the solution of ill-posed problems", in Inverse Problems in Engineering: Theory and Practice. Vol. 1, (2002), 49-58.

33.   Yeun, Y.S., Lee, K.H., Han, S.M. and Yang, Y.S., "Smooth fitting with a method for determining the regularization parameter under the genetic programming algorithm", Information Sciences,  Vol. 133, No. 3, (2001), 175-194.

34.   Luo, J. and Li, X., "An inverse aeroacoustic problem on rotor wake/stator interaction", Journal of sound and vibration,  Vol. 254, No. 2, (2002), 219-229.

35.   Venkatesh, P.K., "On tikhonov regularisation", Physica A: Statistical Mechanics and its Applications,  Vol. 284, No. 1, (2000), 448-460.

36.   Hansen, O., Fischer, S. and Ramlau, R., "Regularization of mellin-type inverse problems with an application to oil engineering", Linear algebra and its applications,  Vol. 391, (2004), 125-147.

37.   Lamm, P.K., "Variable-smoothing regularization methods for inverse problems", (1999).

38.   Golub, G.H. and Van Loan, C.F., "Matrix computations, JHU Press,  Vol. 3,  (2012).

39.   Hernández, A., Calvo, J., Prádanos, P. and Tejerina, F., "Pore size distributions in microporous membranes. A critical analysis of the bubble point extended method", Journal of Membrane Science,  Vol. 112, No. 1, (1996), 1-12.

40.   Hernandez, A., Calvo, J., Pradanos, P. and Tejerina, F., "Pore size distributions of track-etched membranes; comparison of surface and bulk porosities", Colloids and Surfaces A: Physicochemical and Engineering Aspects,  Vol. 138, No. 2, (1998), 391-401.

41.   Shrestha, A., Pellegrino, J., Husson, S.M. and Wickramasinghe, S.R., "A modified porometry approach towards characterization of mf membranes", Journal of Membrane Science,  Vol. 421, No., (2012), 145-153.    





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir