IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 841-847    Article in Press

downloaded Downloaded: 124   viewed Viewed: 2045

G. Khayati and M. Zamani
( Received: February 27, 2015 – Accepted: May 02, 2015 )

Abstract    The aim of this study was the use of fish waste hydrolysate (FWH) as a substrate for alkaline protease production using isolated Bacillus sp. in a batch system. Then the fermentation kinetics of enzyme production was studied. The results show that with the addition of FWH to the fermentation medium with a final concentration of 4% (optimal concentration), alkaline protease value reached a maximum value (89 U/ml), which is 63% higher than that of the control medium. Also fermentation kinetics of alkaline protease by isolated Bacillus sp. was studied. Several kinetic models were evaluated; the combination of the Moser and Boulton kinetic model gave the best prediction. This nonlinear mathematical model performed satisfactory on biomass, substrate, and enzyme predictions.


Keywords    alkaline protease, Fish waste hydrolysate, modeling, Bacillus


چکیده    هدف از این مطالعه استفاده از هیدرولیز ضایعات ماهی (FWH) به عنوان یک سوبسترا برای تولید پروتئاز قلیایی و بررسی سینتیک تولید آنزیم با استفاده از جدایه باسیلوس در سیستم بسته بود. نتایج نشان داد که با با افزودن 4% FWH به محیط تخمیر حداکثر میزان تولید پروتئاز قلیایی به U/ml 89 رسید که آن 63٪ بالاتر از محیط کنترل بود. پس از بررسی چندین مدل سینتیکی ، مدل ترکیبی موزر و بولتون بعنوان بهترین مدل انتخاب شدند. نتایج نشان داد که یک سازگاری خوبی بین حل مدل و داده های تجربی برای غلظت سلول، سوبسترا و فعالیت آنزیم وجود دارد و این مدل ریاضی غیر خطی پیشگوئی زیست توده، غلظت سوبسترا و فعالیت آنزیم را بخوبی اقناع می کند. همچنین، ضریب همبستگی حاصله بالاتر از 98/0 بود ، به طوری که مدل سینتیکی می تواند برای شبیه سازی متغیرهای تخمیر مورد استفاده قرار گیرد.



1.        Prakasham, R., Rao, C.S. and Sarma, P., "Green gram husk—an inexpensive substrate for alkaline protease production by bacillus sp. In solid-state fermentation", Bioresource Technology,  Vol. 97, No. 13, (2006), 1449-1454.

2.        Jayakumar, R., Jayashree, S., Annapurna, B. and Seshadri, S., "Characterization of thermostable serine alkaline protease from an alkaliphilic strain bacillus pumilus MCAS8 and its applications", Applied Biochemistry and Biotechnology,  Vol. 168, No. 7, (2012), 1849-1866.

3.        Z. Ghobadi Nejad, S. Yaghmaei and Hosseini, R.H., "Production of extracellular protease and determination of optimal condition by bacillus lichniformis bbrc 100053", International Journal of Engineering, Transactions B: Applications,  Vol. 22, No. 3, (2009), 221-228.

4.        Potumarthi, R., Nagavalli, R. and Jetty, A., "Kinetic analysis of alkaline protease production at different substrate concentrations by bacillus licheniformis-ncim in stirred tank reactor", (2012).

5.        Mahanta, N., Gupta, A. and Khare, S., "Production of protease and lipase by solvent tolerant pseudomonas aeruginosa PseA in solid-state fermentation using jatropha curcas seed cake as substrate", Bioresource Technology,  Vol. 99, No. 6, (2008), 1729-1735.

6.        Kumar, A.G., Nagesh, N., Prabhakar, T. and Sekaran, G., "Purification of extracellular acid protease and analysis of fermentation metabolites by synergistes sp. Utilizing proteinaceous solid waste from tanneries", Bioresource Technology,  Vol. 99, No. 7, (2008), 2364-2372.

7.        Wang, S.-L. and Yeh, P.-Y., "Production of a surfactant-and solvent-stable alkaliphilic protease by bioconversion of shrimp shell wastes fermented by bacillus subtilis tku007", Process Biochemistry,  Vol. 41, No. 7, (2006), 1545-1552.

8.        Choonia, H.S. and Lele, S., "Kinetic modeling and implementation of superior process strategies for β-galactosidase production during submerged fermentation in a stirred tank bioreactor", Biochemical Engineering Journal,  Vol. 77, (2013), 49-57.

9.        Gilani, S., Najafpour, G., Heydarzadeh, H. and Zare, H., "Kinetic models for xanthan gum production using xanthomonas campestris from molasses", Chemical Industry and Chemical Engineering Quarterly,  Vol. 17, No. 2, (2011), 179-187.

10.     Anvari, M. and Khayati, G., "Production and characterization of alkaline protease from Bacillus licheniformis sp. Isolated from iranian northern soils with ram horn hydrolysate", Trends in Applied Sciences Research,  Vol. 6, No. 10, (2011).

11.     Gao, M.-T., Hirata, M., Toorisaka, E. and Hano, T., "Acid-hydrolysis of fish wastes for lactic acid fermentation", Bioresource Technology,  Vol. 97, No. 18, (2006), 2414-2420.

12.     Miller, G. L., "Use of dinitrosalicylic acid reagent for determination of reducing sugar", Analytical Chemistry,  Vol. 31, No. 3, (1959), 426-428.

13.     Meyers, S. and Ahearn, D., "Extracellular proteolysis by candida lipolytica", Mycologia, (1977), 646-651.

14.     Haldane, J.B.S., "Enzymes", Longmans London, (1930).

15.     Boulton, R., "The prediction of fermentation behavior by a kinetic model", American Journal of Enology and Viticulture,  Vol. 31, No. 1, (1980), 40-45.

16.     Levenspiel, O., "The monod equation: A revisit and a generalization to product inhibition situations", Biotechnology and BioengineeringVol. 22, No. 8, (1980), 1671-1687.

17.     Moser, H., "The dynamics of bacterial populations in the chemostat", Carnegie Institution Publication,  Vol., No. 614, (1958).

18.     Luong, J., "Kinetics of ethanol inhibition in alcohol fermentation", Biotechnology and Bioengineering,  Vol. 27, No. 3, (1985), 280-285.

19.     Burhan, N., Sapundzhiev, T. and Beschkov, V., "Mathematical modelling of cyclodextrin-glucanotransferase production by batch cultivation", Biochemical Engineering Journal,  Vol. 24, No. 1, (2005), 73-77.

20.     Burhan, N., Sapundzhiev, T. and Beschkov, V., "Mathematical modelling of cyclodextrin-glucano-transferase production by immobilised cells of Bacillus circulans ATCC 21783 at batch cultivation", Biochemical Engineering Journal,  Vol. 35, No. 2, (2007), 114-119. 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir