IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 940-948    Article in Press

downloaded Downloaded: 166   viewed Viewed: 2482

Z. Baniamerian, R. Mehdipour and F. Kargar
( Received: January 09, 2015 – Accepted: May 02, 2015 )

Abstract    Recently, increase in the cost of fossil fuels and taking into consideration the environmental effects of exploiting them, caused many researchers and governments to find some ways to make use of renewable energies more cost-effectively. Solar energy is a category of renewable energies which could be harvested via several technologies. One of the most practical methods is using parabolic troughs. In solar power plants, many parabolic troughs are set in parallel rows in order to concentrate the solar power onto a tube absorber. In designing and manufacturing parabolic troughs and their structures, it is essential to take into account the wind force. Any negligence in considering the wind force could be concluded in losing the accuracy and efficiency. In this article, the aerodynamic coefficients of parabolic solar troughs have been investigated using CFD methods. The variations of aerodynamic coefficients considering terrain effects, the angle of collectors and the gap between mirrors have been studied. Also, it will be demonstrated that in order to properly align trough collector in solar farms, it is essential to study the vortices shed created at the behind of parabolic troughs and its effects on collectors’ structures in the result of wind interaction. At the end and as an illustration, the drag and lift coefficients of collectors have been calculated in Yazd power plant.


Keywords    solar trough collector, aerodynamic coefficient, numerical analysis, vortex shedding


چکیده    افزايش قيمت سوختها استفاده از انرژي نو را در جايگاه ويژه اي قرار داده است. انرژي خورشيدي يكي از موضوعات مورد توجه براي توليد انرژي مي باشد. در طراحي كلكتورهاي خورشيدي مهمترين نيرو نيروي باد بوده است و بايد در طراحي كلكتور مقاومت در برابر اين نيرو مورد حساب قرار گيرد. در اين مقاله نكات و نحوه محاسبه ضرايب آيروديناميك بر كلكتور خورشيدي به كمك روش CFD نشان داده مي شود. نشان داده مي شود كه مدلسازي گردابه هاي پشت كلكتور بسيار مهم بوده و ميزان ضريب درگ، ليف و فركانس نيروي باد بر كلكتور خورشيدي نيروگاه يزد ايران محاسبه مي شود. تغييرات ضرايب در زاويه كلكتور و اثر زمين و شيارهاي بين آينه ها بررسي ميگردد.


1.        Azad, E., "Interconnected heat pipe solar collector", International Journal of Engineering Transaction A: Basics,  Vol. 22, No. 3, (2009), 233-242.

2.        Dhass, A., Natarajan, E. and Lakshmi, P., "An investigation of temperature effects on solar photovoltaic cells and modules", International Journal of Engineering Transaction B: Applications ,  Vol. 27, No. 11, (2014), 1713-1722.

3.        Kouhikamali, R. and Hassani, M., "The possibility of using flat plate solar collector based on the best calculated tilt angle in the city of rasht as a case study", International Journal of Engineering Transaction B: Applications,  Vol. 27, No. 8, (2014), 1297-1306.

4.        Barlev, D., Vidu, R. and Stroeve, P., "Innovation in concentrated solar power", Solar Energy Materials and Solar Cells,  Vol. 95, No. 10, (2011), 2703-2725.

5.        Wang, Z., "Prospectives for china's solar thermal power technology development", Energy,  Vol. 35, No. 11, (2010), 4417-4420.

6.        Poullikkas, A., "Economic analysis of power generation from parabolic trough solar thermal plants for the mediterranean region—a case study for the island of cyprus", Renewable and Sustainable Energy Reviews,  Vol. 13, No. 9, (2009), 2474-2484.

7.        Mills, D., "Advances in solar thermal electricity technology", Solar Energy,  Vol. 76, No. 1, (2004), 19-31.

8.        Giostri, A., Binotti, M., Astolfi, M., Silva, P., Macchi, E. and Manzolini, G., "Comparison of different solar plants based on parabolic trough technology", Solar Energy,  Vol. 86, No. 5, (2012), 1208-1221.

9.        Foran, R.K., "Vibration and flow field characteristics of a hemispherical solar concentrator", Texas Tech University,  (1984).

10.     EU-FP, E., "Wind loads on solar energy roofs", Heron,  Vol. 52, No. 3, (2007), 201-222.

11.     Rhee, J., Nguyen, C., Grace, M. and Thu, A., "An effective, low-cost mechanism for direct drag force measurement on solar concentrators", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 99, No. 5, (2011), 665-669.

12.     Hosoya, N., Peterka, J., Gee, R. and Kearney, D., "Wind tunnel tests of parabolic trough solar collectors", National Renewable Energy Laboratory Subcontract Report NREL/SR-550-32282,  (2008).

13.     Peterka, J., Hosoya, N., Bienkiewicz, B. and Cermak, J., Wind load reduction for heliostats., Colorado State Univ., Fort Collins (USA), (1986).

14.     Peterka, J.A., Tan, L., Bienkiewcz, B. and Cermak, J., Mean and peak wind load reduction on heliostats, Colorado State Univ., Fort Collins (USA), (1987).

15.     Peterka, J.A., Tan, Z., Bienkiewicz, B. and Cermak, J., "Wind loads on heliostats and parabolic dish collectors", Solar Energy Research Institute, Paper SERI/STR-253-3431, Vol. 89,(1988).

16.     Ewald, R., Peterka, J.A. and Cermak, J.E., "Heliostat-array wind-tunnel study, Fluid Mechanics and Wind Engineering Program, Fluid Dynamics and Diffusion Laboratory, Department of Civil Engineering, Colorado State University,  (1979).

17.     Gong, B., Wang, Z., Li, Z., Zhang, J. and Fu, X., "Field measurements of boundary layer wind characteristics and wind loads of a parabolic trough solar collector", Solar Energy,  Vol. 86, No. 6, (2012), 1880-1898.

18.     Pfahl, A., Buselmeier, M. and Zaschke, M., "Wind loads on heliostats and photovoltaic trackers of various aspect ratios", Solar Energy,  Vol. 85, No. 9, (2011), 2185-2201.

19.     Naeeni, N. and Yaghoubi, M., "Analysis of wind flow around a parabolic collector (1) fluid flow", Renewable Energy,  Vol. 32 , No. 11, (2007), 1898-1916.

20.     Shademan, M. and Hangan, H., "Wind loading on solar panels at different inclination angles", in 11th Conference of American Society of Wind Engineers, San Juan, Puerto Rico., (2009).

21.     Lee, B. and Evans, R., "The measurement of wind flow patterns over building roofs", Building and Environment,  Vol. 19, No. 4, (1984), 235-241.

22.     Lombardi, G., "Wind-tunnel tests on a model antenna rotating in a cross flow", Engineering Structures,  Vol. 13, No. 4, (1991), 345-350.

23.     Holmes, J.D., Banks, R. and Roberts, G., "Drag and aerodynamic interference on microwave dish antennas and their supporting towers", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 50, (1993), 263-269.

24.     Arasu, A.V. and Sornakumar, T., "Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors", Solar Energy,  Vol. 81, No. 10, (2007), 1273-1279.

25.     Holmes, J., Tamura, Y. and Krishna, P., "Comparison of wind loads calculated by fifteen different codes and standards, for low, medium and high-rise buildings", in Proceedings of 11th American Conference on Wind Engineering, San-Juan, Puerto Rico, (2009).

Ray, M., Rogers, A. and McGowan, J., "Analysis of wind shear models and trends in different terrains", University of Massachusetts, Department of Mechanical and Industrial Engineering, Renewable Energy Research Laboratory, (2006).

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir