Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 922-931    Article in Press

downloaded Downloaded: 181   viewed Viewed: 2391

  COMPREHENSIVE DECISION MODELING OF REVERSE LOGISTICS SYSTEM: A MULTI-CRITERIA DECISION MAKING MODEL BY USING HYBRID EVIDENTIAL REASONING APPROACH AND TOPSIS (TECHNICAL NOTE)
 
M. Eskandarpour and A. Hasani
 
( Received: January 25, 2015 – Accepted: June 11, 2015 )
 
 

Abstract    In the last two decades, product recovery systems have received increasing attention due to several reasons such as new governmental regulations and economic advantages. One of the most important activities of these systems is to assign returned products to suitable reverse manufacturing alternatives. Uncertainty of returned products in terms of quantity, quality, and time complicates the decision making process. In this study, a new approach based on Evidential Reasoning Approach (ERA) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is proposed to deal with alternative (recovery system) selection via considering a comprehensive model in reverse logistics. Application of ERA helps us to take into account the experts’ quantitative and qualitative opinions in an uncertain environment due to various reasons such as incomplete assessment as well as imprecise and missing information simultaneously. Then, TOPSIS is used to rank alternatives that were evaluated by ERA. Finally, a case study in the automotive industry is used to demonstrate the efficiency of the proposed method in selecting suitable reverse manufacturing alternatives.

 

Keywords    Product Recovery, Reverse Logistic, TOPSIS, ERA, Incomplete Assessment, Group-AHP

 

چکیده    در طی دو دهه اخیر، سیستم احیا محصولات بسیار مورد توجه واقع شده است به دلایل متنوعی همچون الزامات قانونی و مزایای اقتصادی. یکی از مهم‌ترین فعالیت‌ها در این سیستم‌ها، تخصیص محصولات برگشتی به گزینه‌های مناسب برای مدیریت آن‌ها است. عدم قطعیت محصولات برگشتی در مقدار، کیفیت، و زمان، فرایند تصمیم‌سازی را پیچیده می‌سازد. در این مقاله، یک رویکرد جدید بر پایه روش استدلال شهودي و تاپسیس برای مواجه با انتخاب گزینه‌های ممکن در یک مدل جامع برای سیستم لجستیک برگشتی ارایه شده است. استفاده از روش استدلال شهودي به درنظر گرفتن انتخاب‌های کمی و کیفی خبرگان در یک محیط غیرقطعی به دلایل مختلف نظیر ارزیابی ناقص، اطلاعات مبهم و ازدست رفته به صورت همزمان، کمک می‌نماید. سپس از روش تاپسپس برای رتبه‌بندی گزینه‌های ارزیابی شده توسط رویکرد استدلال شهودی استفاده شده است. در نهایت، یک نمونه موردی به‌منظور نمایش کارایی مدل و روش تصمیم‌گیری ارایه‌شده برای انتخاب گزینه‌های مناسب برای مدیریت جریان برگشتی در صنعت خودروسازی بررسی شده است.

References   

 

1.        Hasani, A., Zegordi, S.H. and Nikbakhsh, E., "Robust closed-loop global supply chain network design under uncertainty: The case of the medical device industry", International Journal of Production Research, (2014) Doi. 10.1080/ 00207543. 2014. 965349.

2.        Rogers, D.S. and Tibben-Lembke, R.S., "Going backwards: Reverse logistics trends and practices, Pittsburgh: RLEC Press,  (1999).

3.        Aras, N. and Aksen, D., "Locating collection centers for distance and incentive dependent returns", International Journal of Production Economics,  Vol. 111, (2008), 316-333.

4.        Srivastava, "Network design for reverse logistics", Omega,  Vol. 36, No. 535-548, (2008).

5.        Wadhwa, S., Madaan, J. and Chan, F., "Flexible decision modeling of reverse logistics system: A value adding mcdm approach for alternative selection", Robotics and Computer-Integrated Manufacturing,  Vol. 25, (2009), 460–469.

6.        Lee, C. and Chan, T., "Development of rfid-based reverse logistics system", Expert Systems  with Applications,  Vol. 36, (2009), 9299–9307.

7.        Xanthopoulos, A. and Iakovou, E., "On the optimal design of the disassembly and recovery processes", Waste Management,  Vol. 29, No. 5, (2009), 1702-1711.

8.        Du, F. and Evans, G., "A bi-objective reverse logistics network analysis for post-sale service", Computers & Operations Research,  Vol. 35, (2008), 2617-2634,.

9.        Vincke, P., "Multi-criteria decision-aid, J.W. Sons, Chichester,  (1992).

10.     Greco, S., Ehrgott, M. and Figuera, J., "Trends in multiple criteria decision analysis, Springer,  (2010).

11.     Liu, P.D., "Multi-attribute decision-making method research based on interval vague set and topsis method", Technological and Economic Development of Economy,  Vol. 15, No. 3, (2009), 453-463.

12.     Liu, P.D., "An extended topsis method for multiple attribute group decision making based on generalized interval-valued trapezoidal fuzzy numbers", Informatica,  Vol. 35, No. 2, (2011), 185-196.

13.     Liu, P.D. and Jin, F., "Methods for aggregating intuitionistic uncertain linguistic variables and their application to group decision making", Information Sciences,  Vol. 205: 58-71, (2012).

14.     Ravi, V., Shankar, R. and Tiwari, M.K., "Analyzing alternatives in reverse logistics for end-of-life computers: Anp and balanced scorecard approach", Computers and Industrial Engineering,  Vol. 48, (2005), 327–356,

15.     Mergias, I., Moustakas, K., Papadopoulos, A. and Loizidou, M., "Multi-criteria decision aid approach for the selection of the best compromise management scheme for elvs: The case of cyprus", Journal of Hazardous Materials,  Vol. 147, (2007) 706–717.

16.     Bufard, A., Gheorghe, R., Kiritsis, D. and Xirouchakis, P., "Multi criteria decision-aid approach for product end-of-life alternative selection", International Journal of Production Research,  Vol. 42, No. 16, (2004), 3139-3157.

17.     Chan, J.W.K., "Product end-of-life options selection: Grey relational analysis approach", International Journal of Production Research,  Vol. 46, No. 11, (2008), 2889–2912.

18.     Chin, K.S., Wang, Y., Yang, J. and Poon, K.K.G., "An evidential reasoning based approach for quality function deployment under uncertainty", Expert Systems with Applications,  Vol. 36, (2009), 5684–5694.

19.     Xu, D.L., Yang, J.B. and Wang, Y.M., "The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty", European Journal of Operational Research,  Vol. 174, No. 3, (2006), 1914–1943.

20.     Ren, J., Yusuf, Y.Y. and Burns, N.D., "A decision-support framework for agile enterprise partnering", International Journal of Advanced Manufacturing Technology,  Vol. 41, No. 180-192, (2009).

21.     Wang, Y.M., Yang, J.B. and Xu, D.L., "Environmental impact assessment using the evidential reasoning approach", European Journal of Operational Research,  Vol. 174, No. 3, (2006), 1885-1913.

22.     Chin, K.S., Xu, D.L., Yang, J.B. and Lam, J.P., "Group-based er–ahp system for product project screening", Expert Systems with Applications,  Vol. 35, (2008) 1909–1929.

23.     Yang, J.B., "Rule and utility based evidential reasoning approach for multiple attribute decision analysis under uncertainty", European Journal of Operational Research,  Vol. 131, No. 1, (2001), 31-61.

24.     Hwang, C.L. and Yoon, K., "Multiple attribute decision making-methods and applications: A state of the art survey, Springer-Verlag,  (1981).

25.     China, K.S. and Fu, C., "Integrated evidential reasoning approach in the presence of cardinal and ordinal preferences and its applications in software selection", Expert Systems with Applications,  Vol. 41, No. 15, (2014), 6718–6727.

26.     Yahyaei, M., Bashiri, M. and Garmeyi, Y., "Multi-criteria logistic hub location by network segmentation under criteria weights uncertainty (research note)", International Journal of Engineering Transactions B: Applications,  Vol. 27, No. 8, (2014), 1205-1214 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir