Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 832-840    Article in Press

downloaded Downloaded: 229   viewed Viewed: 2949

  MICROWAVE PRETREATMENT OF FRESH WATER HYACINTH (EICHHORNIA CRASSIPES) IN BATCH ANAEROBIC DIGESTION TANK (RESEARCH NOTE)
 
Budiyono, S. Sumardiono and D. Tri Mardiani
 
( Received: April 10, 2015 – Accepted: June 11, 2015 )
 
 

Abstract    The purpose of the research was to study the effect of microwave power inpretreatment of fresh waterhyacinth on biogas production. The variations of microwave power levels are 240; 400; 560 and 800 W. The variations of microwave heating time are 5; 7 and 9 min. The unpretreated fresh water hyacinth are used as control. The result of research showed that the microwave pretreatment of fresh water hyacinth improved biogas production. Microwave pretreatment had a positive impact on anaerobic biodegradability of fresh waterhyacinth.Almost all pretreatedfresh water hyacinthproduced biogas were higher compare tounpretreated fresh water hyacinth.The maximum of biogas production from freshwater hyacinth was obtained at 560 W for 7 of microwave pretreatment. In this condition, pretreated fresh water hyacinthresulted biogas production of 75,125 mL/g TS.The unpretreated fresh water hyacinth produced biogas of 37,5625 mL/g TS. The highest value of kinetic constants of biogas yield potential (A), the maximum biogas production rate (U) and the duration of lag phase were78.2300 mL/g TS; 2.2653 mL/(g TS.day); 4.6031 day, recpectively.

 

Keywords    water hyacinth, microwave pretreatment, biogas production

 

چکیده   

هدف از این پژوهش، بررسی اثر قدرت مایکروویو در پیشتیمار گل سنبل آب شیرین در تولید بیوگاز بود. تغییرات سطح قدرت مایکروویو 240، 400، 560 و 800 وات بودند. تغییرات زمان حرارت مایکروویو 5، 7 و 9 دقیقه بود. سنبل آب شیرین پیشتیمار نشده به عنوان شاهد استفاده شد. نتایج تحقیق نشان داد که تولید بیوگاز از سنبل تازه پیشتیمار شده در مایکروویو بهبود یافت. پیشتیمار مایکروویو، تاثیر مثبتی بر زیست تخریب پذیری بی هوازی سنبل آب شیرین داشت. حداکثر تولید بیوگاز از سنبل آب شیرین پیشتیمار شده در مایکروویو در 560 وات به مدت 7 دقیقه به دست آمد. در این شرایط، سنبل آب شیرین پیشتیمار شده به میزان 12/75 میلی لیتر بیوگاز به ازای هر گرم از جامد کل تولید کرد. در حالی که سنبل آب شیرین پیشتیمار نشده 56/37 میلی لیتر بیوگاز به ازای هر گرم از جامد کل تولید کرد. بیشترین مقدار ثوابت سینتیکی تولید بیوگاز از جمله بازده بیوگاز، ماکزیمم نرخ تولید بیوگاز و مدت زمان فاز تاخیر به ترتیب 23/78 میلی لیتر بیوگاز به ازای هر گرم از جامد، 26/2 میلی لیتر بیوگاز به ازای هر گرم از جامد در هر روز و 60/4 روز به دست آمد.

References   

 

1.     Amin, S., "Review on biofuel oil and gas production processes from microalgae", Energy Conversion and Management,  Vol. 50, No. 7, (2009), 1834-1840.

2.     Singh, J. and Gu, S., "Commercialization potential of microalgae for biofuels production", Renewable and Sustainable Energy Reviews,  Vol. 14, No. 9, (2010), 2596-2610.

3.     Wahyuni, S., "Biogas", Penebar Swadaya, Jakarta, (2009).

4.     Dueblein, D. and Steinhauser, A., "Biogas from waste and renewable resources", KGaA: Wiley-VCH Verlag GmbH and Co, (2008).

5.     Hendriks, A. and Zeeman, G., "Pretreatments to enhance the digestibility of lignocellulosic biomass", Bioresource Technology,  Vol. 100, No. 1, (2009), 10-18.

6.     Shankar, G. and Tondon, G., "A laboratory study of biogas production from water hyacinth", World Journal of Microbiology and Biotechnology,  Vol. 1, (1986), 72-77.

7.     Shankar, B., Patil, J., Muralidhara, P., Ramya, M. and Ramya, R., "Effect of substrate concentration on biomethanation of water hyacinth", International Journal of Chemical, Environmental & Biological Sciences,  Vol. 1, No. 1, (2013), 2320-4087.

8.     Ofoefule, A., Uzodinma, E. and Onukwuli, O., "Comparative study of the effect of different pretreatment methods on biogas yield from water hyacinth (eichhornia crassipes)", International Journal of Physical Sciences,  Vol. 4, No. 8, (2009), 535-539.

9.     Patil, J., Raj, M.L.A., Bhargav, S. and Sowmya, S., "Anaerobic co-digestion of water hyacinth with primary sludge", Research Journal of Chemical Sciences,  Vol. 1, No. 3, (2011), 72-77.

10.   Patil, J.H., Raj, M.A., Muralidhara, P., Desai, S. and Raju, G.M., "Kinetics of anaerobic digestion of water hyacinth using poultry litter as inoculum", International Journal of Environmental Science and Development,  Vol. 3, No. 2, (2012), 94-98.

11.   Raja, A. and Lee, R., "Biomethanation of water hyacinth using additives under forced mixing in a bioreactor", International Journal of Chemical Research, Available online@ www. ijcsr. co. in,  (2012). 15-24

12.   Kunatsa, T., Madiye, L., Chikuku, T., Shonhiwa, C. and Musademba, D., "Feasibility study of biogas production from water hyacinth a case of laka chivero-harare, zimbabwe", International Journal of Engineering Technology,  Vol. 3, No. 2, (2013), 119-128.

13.   Al Imam, M.F., Khan, M., Sarkar, M. and Ali, S., "Development of biogas processing from cow dung, poultry waste, and water hyacinth", International Journal of Natural and Applied Science,  Vol. 2, No. 1, (2013), 13-17.

14.   Gao, J., Chen, L., Yan, Z. and Wang, L., "Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia Crassipes)", Bioresource Technology,  Vol. 132, No., (2013), 361-364.

15.   Wiloso, E.I., Basuki, T. and Aiman, S., "Utilization of agricultural wastes for biogas production in indonesia", eubios.info  (1995).

16.   Estevez, M.M., Linjordet, R. and Morken, J., "Effects of steam explosion and co-digestion in the methane production from salix by mesophilic batch assays", Bioresource Technology,  Vol. 104, No., (2012), 749-756.

17.   Adel, A.M., El–Wahab, Z.H.A., Ibrahim, A.A. and Al–Shemy, M.T., "Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part i. Acid catalyzed hydrolysis", Bioresource Technology,  Vol. 101, No. 12, (2010), 4446-4455.

18.   Fernandes, T., Bos, G.K., Zeeman, G., Sanders, J. and Van Lier, J., "Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass", Bioresource Technology,  Vol. 100, No. 9, (2009), 2575-2579.

19.   Doğan, I. and Sanin, F.D., "Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method", Water Research,  Vol. 43, No. 8, (2009), 2139-2148.

20.   Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M. and Ladisch, M., "Features of promising technologies for pretreatment of lignocellulosic biomass", BioresourceTechnology,  Vol. 96, No. 6, (2005), 673-686.

21.   Sun, Y. and Cheng, J., "Hydrolysis of lignocellulosic materials for ethanol production: A review", Bioresource Technology,  Vol. 83, No. 1, (2002), 1-11.

22.   Bruni, E., Jensen, A.P. and Angelidaki, I., "Comparative study of mechanical, hydrothermal, chemical and enzymatic treatments of digested biofibers to improve biogas production", Bioresource Technology,  Vol. 101, No. 22, (2010), 8713-8717.

23.   Thostenson, E. and Chou, T.-W., "Microwave processing: Fundamentals and applications", Composites Part A: Applied Science and Manufacturing,  Vol. 30, No. 9, (1999), 1055-1071.

24.   Pino-Jelcic, S.A., Hong, S.M. and Park, J.K., "Enhanced anaerobic biodegradability and inactivation of fecal coliforms and salmonella spp. In wastewater sludge by using microwaves", Water Environment Research, (2006), 209-216.

25.   Eskicioglu, C., Kennedy, K.J. and Droste, R.L., "Enhancement of batch waste activated sludge digestion by microwave pretreatment", Water Environment Research,  Vol. 79, No. 11, (2007), 2304-2317.

26.   Berglund Odhner, P., Sárvári Horváth, I., Kabir, M.M. and Shabbauer, A., "Biogas from lignocellulosic biomass", Rapport SGC,  sgc.camero.se, (2012).

27.   Eskicioglu, C., Terzian, N., Kennedy, K.J., Droste, R.L. and Hamoda, M., "Athermal microwave effects for enhancing digestibility of waste activated sludge", Water Research,  Vol. 41, No. 11, (2007), 2457-2466.

28.   Zhu, S., Wu, Y., Yu, Z., Wang, C., Yu, F., Jin, S., Ding, Y., Chi, R.a., Liao, J. and Zhang, Y., "Comparison of three microwave/chemical pretreatment processes for enzymatic hydrolysis of rice straw", Biosystems Engineering,  Vol. 93, No. 3, (2006), 279-283.

29.   Jackowiak, D., Bassard, D., Pauss, A. and Ribeiro, T., "Optimisation of a microwave pretreatment of wheat straw for methane production", Bioresource Technology,  Vol. 102, No. 12, (2011), 6750-6756.

30.   Sapci, Z., Morken, J. and Linjordet, R., "An investigation of the enhancement of biogas yields from lignocellulosic material using two pretreatment methods: Microwave irradiation and steam explosion", BioResources,  Vol. 8, No. 2, (2013), 1976-1985.

31.   Banik, S., Bandyopadhyay, S., Ganguly, S. and Dan, D., "Effect of microwave irradiated methanosarcina barkeri dsm-804 on biomethanation", Bioresource Technology,  Vol. 97, No. 6, (2006), 819-823.

32.   Eskicioglu, C., Prorot, A., Marin, J., Droste, R.L. and Kennedy, K.J., "Synergetic pretreatment of sewage sludge by microwave irradiation in presence of h 2 o 2 for enhanced anaerobic digestion", Water Research,  Vol. 42, No. 18, (2008), 4674-4682.

33.   Tyagi, V.K. and Lo, S.-L., "Microwave irradiation: A sustainable way for sludge treatment and resource recovery", Renewable and Sustainable Energy Reviews,  Vol. 18, No., (2013), 288-305.

34.   Appels, L., Houtmeyers, S., Degrève, J., Van Impe, J. and Dewil, R., "Influence of microwave pre-treatment on sludge solubilization and pilot scale semi-continuous anaerobic digestion", Bioresource Technology,  Vol. 128, No., (2013), 598-603.

35.   Rani, R.U., Kumar, S.A., Kaliappan, S., Yeom, I. and Banu, J.R., "Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge", Waste Management,  Vol. 33, No. 5, (2013), 1119-1127.

36.   Jin, Y., Hu, Z. and Wen, Z., "Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment", Water Research,  Vol. 43, No. 14, (2009), 3493-3502.

37.   Marin, J., Kennedy, K.J. and Eskicioglu, C., "Effect of microwave irradiation on anaerobic degradability of model kitchen waste", Waste Management,  Vol. 30, No. 10, (2010), 1772-1779.

38.   Mudhoo, A., Moorateeah, P.R. and Mohee, R., "Effects of microwave heating on biogas production, chemical oxygen demand and volatile solids solubilization of food residues",  Citeseer, (2012).

39.   Shahriari, H., Warith, M., Hamoda, M. and Kennedy, K.J., "Anaerobic digestion of organic fraction of municipal solid waste combining two pretreatment modalities, high temperature microwave and hydrogen peroxide", Waste Management,  Vol. 32, No. 1, (2012), 41-52.

40.   Mehdizadeh, S.N., Eskicioglu, C., Bobowski, J. and Johnson, T., "Conductive heating and microwave hydrolysis under identical heating profiles for advanced anaerobic digestion of municipal sludge", Water Research,  Vol. 47, No. 14, (2013), 5040-5051.

41.   Saifuddin, N. and Fazlili, S., "Effect of microwave and ultrasonic pretreatments on biogas production from anaerobic digestion of palm oil mill effleunt", American Journal of Engineering and Applied Sciences,  Vol. 2, No. 1, (2009) 23-34.

42.   I Nyoman, W. and Seno, J., "The kinetic of biogas production rate from cattle manure in batch mode", International Journal of Chemical and Biological Engineering,  Vol. 3, No. 1, (2010), 39-45.

43.   Syaichurrozi, I. and Sumardiono, S., "Biogas production kinetic from vinasse waste in batch mode anaerobic digestion", World Applied Sciences Journal,  Vol. 26, No. 11, (2013), 1464-1472.

44.   Syaichurrozi, I. and Sumardiono, S., "Kinetic model of biogas yield production from vinasse at various initial ph: Comparison between modified gompertz model and first order kinetic model", Research Journal of Applied Sciences, Engineering and Technology,  Vol. 7, No. 13, (2014), 2798-2805.

45.   Budiyono, B. and Sumardiono, S., "Effect of total solid content to biogas production rate from vinasse", International Journal of Engineering,  Vol. 27, No. 2, (2014), 177-184.

46.   Syaichurrozi, I. and Sumardiono, S., "Predicting kinetic model of biogas production and biodegradability organic materials: Biogas production from vinasse at variation of cod/n ratio", Bioresource Technology,  Vol. 149, No., (2013), 390-397.

47.   Lay, J.-J., Li, Y.-Y. and Noike, T., "Mathematical model for methane production from landfill bioreactor", Journal of Environmental Engineering,  Vol. 124, No. 8, (1998), 730-736.

48.   Shin, J.-D., Han, S.-S., Eom, K.-C., Sung, S.-H., Park, S.-W. and Kim, H.-O., "Predicting methane production potential of anaerobic co-digestion of swine manure and food waste", Environmental Engineering Research,  Vol. 13, No. 2, (2008), 93-97.

49.   Adiga, S., Ramya, R., Shankar, B., Patil, J.H. and Geetha, C., "Kinetics of anaerobic digestion of water hyacinth, poultry litter, cow manure and primary sludge: A comparative study", International Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE),  Vol. 42, No., (2012), 73-78.

50.   Kaatze, U., "Fundamentals of microwaves", Radiation Physics and Chemistry,  Vol. 45, No. 4, (1995), 539-548.

51.   Kodri, K., Dwiargo, B. and Yulianingsih, R., "Pemanfaatan enzim selulase dari trichoderma reseei dan aspergillus niger sebagai katalisator hidrolisis enzimatik jerami padi dengan pretreatment microwave", Jurnal Bioproses Komoditas Tropis,  Vol. 1, No. 1, (2013) 54-61.

52.   Taherzadeh, M.J. and Karimi, K., "Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review", International Journal of Molecular Sciences,  Vol. 9, No. 9, (2008), 1621-1651.

53.   Choudhary, R., Umagiliyage, A.L., Liang, Y., Siddaramu, T., Haddock, J. and Markevicius, G., "Microwave pretreatment for enzymatic saccharification of sweet sorghum bagasse", Biomass and Bioenergy,  Vol. 39, (2012), 218-226.

54.   Fengel, D. and Wegener, G., "Wood: Chemistry, ultrastructure, reactions, Walter de Gruyter,  (1983).

55.   Bobleter, O., "Hydrothermal degradation of polymers derived from plants", Progress in Polymer Science,  Vol. 19, No. 5, (1994), 797-841.

56.   Lu, Y., Yang, B., Gregg, D., Saddler, J.N. and Mansfield, S.D., "Cellulase adsorption and an evaluation of enzyme recycle during hydrolysis of steam-exploded softwood residues", Applied Biochemistry and Biotechnology,  Vol. 98, No. 1-9, (2002), 641-654.

57.   Zhang, Y.-H.P. and Lynd, L.R., "Toward an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed cellulase systems", Biotechnology and Bioengineering,  Vol. 88, No. 7, (2004), 797-824.

58.   Gregg, D. and Saddler, J.N., "A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process", in Seventeenth Symposium on Biotechnology for Fuels and Chemicals, Springer. (1996), 711-727.

59.   Grethlein, H.E., "The effect of pore size distribution on the rate of enzymatic hydrolysis of cellulosic substrates", Nature Biotechnology,  Vol. 3, No. 2, (1985), 155-160.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60.   Palonen, H., Thomsen, A.B., Tenkanen, M., Schmidt, A.S. and Viikari, L., "Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood", Applied Biochemistry and Biotechnology,  Vol. 117, No. 1, (2004), 1-17.

61.   Drapcho, C.M., Nhuan, N.P. and Walker, T.H., "Biofuels engineering process technology, McGraw-Hill New York, NY, USA:,  (2008).

62.   Sapci, Z., "The effect of microwave pretreatment on biogas production from agricultural straws", Bioresource Technology,  Vol. 128, No., (2013), 487-494.

63.   Chen, W.-H. and Kuo, P.-C., "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass", Energy,  Vol. 36, No. 2, (2011), 803-811.

64.   Ahring, B.K., Jensen, K., Nielsen, P., Bjerre, A. and Schmidt, A., "Pretreatment of wheat straw and conversion of xylose and xylan to ethanol by thermophilic anaerobic bacteria", Bioresource Technology,  Vol. 58, No. 2, (1996), 107-113.

65.   Stuckey, D.C. and McCARTY, P.L., "Thermochemical pretreatment of nitrogenous materials to increase methane yield", in Biotechnol. Bioeng. Symp.;(United States), Stanford Univ., CA. Vol. 8, (1978).

66.   Penaud, V., Delgenes, J. and Moletta, R., "Thermo-chemical pretreatment of a microbial biomass: Influence of sodium hydroxide addition on solubilization and anaerobic biodegradability", Enzyme and Microbial Technology,  Vol. 25, No. 3, (1999), 258-263.

67.   Passos, F., Solé, M., García, J. and Ferrer, I., "Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment", Applied Energy,  Vol. 108, No., (2013), 168-175.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir