|

|
IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 832-840
|
Downloaded:
229 |
|
Viewed:
2949 |
|
|
MICROWAVE PRETREATMENT OF FRESH WATER HYACINTH (EICHHORNIA CRASSIPES) IN BATCH ANAEROBIC DIGESTION TANK (RESEARCH NOTE)
|
|
|
Budiyono, S. Sumardiono and D. Tri Mardiani
|
|
|
( Received:
April 10, 2015
– Accepted: June 11, 2015 )
|
|
|
Abstract
The purpose of the research was to study the effect of microwave power inpretreatment of fresh waterhyacinth on biogas
production. The variations of microwave power levels are 240; 400; 560 and 800 W. The variations of microwave heating
time are 5; 7 and 9 min. The unpretreated fresh water hyacinth are used as control. The result of research showed that
the microwave pretreatment of fresh water hyacinth improved biogas production. Microwave pretreatment had a positive
impact on anaerobic biodegradability of fresh waterhyacinth.Almost all pretreatedfresh water hyacinthproduced biogas
were higher compare tounpretreated fresh water hyacinth.The maximum of biogas production from freshwater hyacinth was
obtained at 560 W for 7 of microwave pretreatment. In this condition, pretreated fresh water hyacinthresulted biogas
production of 75,125 mL/g TS.The unpretreated fresh water hyacinth produced biogas of 37,5625 mL/g TS. The highest value
of kinetic constants of biogas yield potential (A), the maximum biogas production rate (U) and the duration of lag phase
were78.2300 mL/g TS; 2.2653 mL/(g TS.day); 4.6031 day, recpectively.
|
|
|
Keywords
water hyacinth, microwave pretreatment, biogas production
|
|
|
چکیده
هدف از این پژوهش، بررسی اثر
قدرت مایکروویو در
پیشتیمار گل سنبل آب
شیرین در تولید بیوگاز بود. تغییرات سطح قدرت مایکروویو 240، 400، 560 و 800 وات بودند. تغییرات زمان حرارت مایکروویو 5، 7 و 9 دقیقه بود. سنبل آب شیرین پیشتیمار نشده به عنوان شاهد استفاده شد. نتایج تحقیق نشان داد که تولید
بیوگاز از سنبل تازه پیشتیمار
شده در مایکروویو بهبود یافت. پیشتیمار مایکروویو،
تاثیر مثبتی بر زیست تخریب پذیری بی هوازی
سنبل آب شیرین داشت. حداکثر تولید بیوگاز از
سنبل آب شیرین پیشتیمار
شده در مایکروویو در 560 وات به مدت 7 دقیقه به دست آمد. در این شرایط، سنبل آب شیرین
پیشتیمار شده به میزان 12/75 میلی لیتر بیوگاز
به ازای هر گرم از جامد کل تولید کرد.
در حالی که سنبل آب شیرین پیشتیمار نشده 56/37 میلی لیتر بیوگاز به ازای هر گرم از جامد کل تولید کرد. بیشترین
مقدار ثوابت سینتیکی تولید بیوگاز از جمله بازده بیوگاز، ماکزیمم نرخ تولید بیوگاز
و مدت زمان فاز تاخیر به ترتیب 23/78 میلی لیتر بیوگاز
به ازای هر گرم از جامد، 26/2 میلی
لیتر بیوگاز به ازای هر گرم از جامد در هر روز و 60/4 روز به دست آمد.
|
|
References
1. Amin, S., "Review on
biofuel oil and gas production processes from microalgae", Energy
Conversion and Management, Vol.
50, No. 7, (2009), 1834-1840.
2. Singh,
J. and Gu, S., "Commercialization potential of microalgae for biofuels
production", Renewable and Sustainable Energy Reviews, Vol. 14, No. 9, (2010), 2596-2610.
3. Wahyuni,
S., "Biogas", Penebar Swadaya, Jakarta, (2009).
4. Dueblein,
D. and Steinhauser, A., "Biogas from waste and renewable resources", KGaA:
Wiley-VCH Verlag GmbH and Co, (2008).
5. Hendriks,
A. and Zeeman, G., "Pretreatments to enhance the digestibility of
lignocellulosic biomass", Bioresource Technology, Vol. 100, No. 1, (2009), 10-18.
6. Shankar,
G. and Tondon, G., "A laboratory study of biogas production from water
hyacinth", World Journal of Microbiology and Biotechnology, Vol. 1, (1986), 72-77.
7. Shankar,
B., Patil, J., Muralidhara, P., Ramya, M. and Ramya, R., "Effect of
substrate concentration on biomethanation of water hyacinth", International
Journal of Chemical, Environmental & Biological Sciences, Vol. 1, No. 1, (2013), 2320-4087.
8. Ofoefule,
A., Uzodinma, E. and Onukwuli, O., "Comparative study of the effect of
different pretreatment methods on biogas yield from water hyacinth (eichhornia
crassipes)", International Journal of Physical Sciences, Vol. 4, No. 8, (2009), 535-539.
9. Patil,
J., Raj, M.L.A., Bhargav, S. and Sowmya, S., "Anaerobic co-digestion of
water hyacinth with primary sludge", Research Journal of Chemical Sciences, Vol. 1, No. 3, (2011), 72-77.
10. Patil, J.H., Raj, M.A., Muralidhara, P.,
Desai, S. and Raju, G.M., "Kinetics of anaerobic digestion of water
hyacinth using poultry litter as inoculum", International Journal of
Environmental Science and Development,
Vol. 3, No. 2, (2012), 94-98.
11. Raja, A. and Lee, R., "Biomethanation of
water hyacinth using additives under forced mixing in a bioreactor", International
Journal of Chemical Research, Available online@ www. ijcsr. co. in, (2012). 15-24
12. Kunatsa, T., Madiye, L., Chikuku, T.,
Shonhiwa, C. and Musademba, D., "Feasibility study of biogas production
from water hyacinth a case of laka chivero-harare, zimbabwe", International
Journal of Engineering Technology,
Vol. 3, No. 2, (2013), 119-128.
13. Al Imam, M.F., Khan, M., Sarkar, M. and Ali,
S., "Development of biogas processing from cow dung, poultry waste, and
water hyacinth", International Journal of Natural and Applied
Science, Vol. 2, No. 1, (2013),
13-17.
14. Gao, J., Chen, L., Yan, Z. and Wang, L.,
"Effect of ionic liquid pretreatment on the composition, structure and
biogas production of water hyacinth (Eichhornia Crassipes)", Bioresource
Technology, Vol. 132, No.,
(2013), 361-364.
15. Wiloso, E.I., Basuki, T. and Aiman, S.,
"Utilization of agricultural wastes for biogas production in indonesia",
eubios.info (1995).
16. Estevez, M.M., Linjordet, R. and Morken, J.,
"Effects of steam explosion and co-digestion in the methane production
from salix by mesophilic batch assays", Bioresource Technology, Vol. 104, No., (2012), 749-756.
17. Adel, A.M., El–Wahab, Z.H.A., Ibrahim, A.A.
and Al–Shemy, M.T., "Characterization of microcrystalline cellulose
prepared from lignocellulosic materials. Part i. Acid catalyzed
hydrolysis", Bioresource Technology,
Vol. 101, No. 12, (2010), 4446-4455.
18. Fernandes, T., Bos, G.K., Zeeman, G.,
Sanders, J. and Van Lier, J., "Effects of thermo-chemical pre-treatment on
anaerobic biodegradability and hydrolysis of lignocellulosic biomass", Bioresource
Technology, Vol. 100, No. 9,
(2009), 2575-2579.
19. Doğan, I. and Sanin, F.D., "Alkaline
solubilization and microwave irradiation as a combined sludge disintegration
and minimization method", Water Research, Vol. 43, No. 8, (2009), 2139-2148.
20. Mosier, N., Wyman, C., Dale, B., Elander, R.,
Lee, Y., Holtzapple, M. and Ladisch, M., "Features of promising
technologies for pretreatment of lignocellulosic biomass", BioresourceTechnology, Vol. 96, No. 6, (2005), 673-686.
21. Sun, Y. and Cheng, J., "Hydrolysis of
lignocellulosic materials for ethanol production: A review", Bioresource
Technology, Vol. 83, No. 1,
(2002), 1-11.
22. Bruni, E., Jensen, A.P. and Angelidaki, I.,
"Comparative study of mechanical, hydrothermal, chemical and enzymatic
treatments of digested biofibers to improve biogas production", Bioresource
Technology, Vol. 101, No. 22,
(2010), 8713-8717.
23. Thostenson, E. and Chou, T.-W.,
"Microwave processing: Fundamentals and applications", Composites
Part A: Applied Science and Manufacturing, Vol. 30, No. 9, (1999), 1055-1071.
24. Pino-Jelcic, S.A., Hong, S.M. and Park, J.K.,
"Enhanced anaerobic biodegradability and inactivation of fecal coliforms
and salmonella spp. In wastewater sludge by using microwaves", Water
Environment Research, (2006), 209-216.
25. Eskicioglu, C., Kennedy, K.J. and Droste,
R.L., "Enhancement of batch waste activated sludge digestion by microwave
pretreatment", Water Environment Research,
Vol. 79, No. 11, (2007), 2304-2317.
26. Berglund Odhner, P., Sárvári Horváth, I.,
Kabir, M.M. and Shabbauer, A., "Biogas from lignocellulosic biomass",
Rapport SGC, sgc.camero.se, (2012).
27. Eskicioglu, C., Terzian, N., Kennedy, K.J.,
Droste, R.L. and Hamoda, M., "Athermal microwave effects for enhancing
digestibility of waste activated sludge", Water Research, Vol. 41, No. 11, (2007), 2457-2466.
28. Zhu, S., Wu, Y., Yu, Z., Wang, C., Yu, F.,
Jin, S., Ding, Y., Chi, R.a., Liao, J. and Zhang, Y., "Comparison of three
microwave/chemical pretreatment processes for enzymatic hydrolysis of rice
straw", Biosystems Engineering, Vol. 93, No. 3, (2006), 279-283.
29. Jackowiak, D., Bassard, D., Pauss, A. and
Ribeiro, T., "Optimisation of a microwave pretreatment of wheat straw for
methane production", Bioresource Technology, Vol. 102, No. 12, (2011), 6750-6756.
30. Sapci, Z., Morken, J. and Linjordet, R.,
"An investigation of the enhancement of biogas yields from lignocellulosic
material using two pretreatment methods: Microwave irradiation and steam
explosion", BioResources, Vol. 8,
No. 2, (2013), 1976-1985.
31. Banik, S., Bandyopadhyay, S., Ganguly, S. and
Dan, D., "Effect of microwave irradiated methanosarcina barkeri dsm-804 on
biomethanation", Bioresource Technology, Vol. 97, No. 6, (2006), 819-823.
32. Eskicioglu, C., Prorot, A., Marin, J.,
Droste, R.L. and Kennedy, K.J., "Synergetic pretreatment of sewage sludge
by microwave irradiation in presence of h 2 o 2 for enhanced anaerobic
digestion", Water Research, Vol. 42,
No. 18, (2008), 4674-4682.
33. Tyagi, V.K. and Lo, S.-L., "Microwave
irradiation: A sustainable way for sludge treatment and resource
recovery", Renewable and Sustainable Energy Reviews, Vol. 18, No., (2013), 288-305.
34. Appels, L., Houtmeyers, S., Degrève, J., Van
Impe, J. and Dewil, R., "Influence of microwave pre-treatment on sludge
solubilization and pilot scale semi-continuous anaerobic digestion", Bioresource
Technology, Vol. 128, No.,
(2013), 598-603.
35. Rani, R.U., Kumar, S.A., Kaliappan, S., Yeom,
I. and Banu, J.R., "Impacts of microwave pretreatments on the
semi-continuous anaerobic digestion of dairy waste activated sludge", Waste
Management, Vol. 33, No. 5,
(2013), 1119-1127.
36. Jin, Y., Hu, Z. and Wen, Z., "Enhancing
anaerobic digestibility and phosphorus recovery of dairy manure through
microwave-based thermochemical pretreatment", Water Research, Vol. 43, No. 14, (2009), 3493-3502.
37. Marin, J., Kennedy, K.J. and Eskicioglu, C.,
"Effect of microwave irradiation on anaerobic degradability of model
kitchen waste", Waste Management, Vol. 30, No. 10, (2010), 1772-1779.
38. Mudhoo, A., Moorateeah, P.R. and Mohee, R.,
"Effects of microwave heating on biogas production, chemical oxygen demand
and volatile solids solubilization of food residues", Citeseer, (2012).
39. Shahriari, H., Warith, M., Hamoda, M. and
Kennedy, K.J., "Anaerobic digestion of organic fraction of municipal solid
waste combining two pretreatment modalities, high temperature microwave and
hydrogen peroxide", Waste Management, Vol. 32, No. 1, (2012), 41-52.
40. Mehdizadeh, S.N., Eskicioglu, C., Bobowski,
J. and Johnson, T., "Conductive heating and microwave hydrolysis under
identical heating profiles for advanced anaerobic digestion of municipal
sludge", Water Research, Vol. 47,
No. 14, (2013), 5040-5051.
41. Saifuddin, N. and Fazlili, S., "Effect
of microwave and ultrasonic pretreatments on biogas production from anaerobic
digestion of palm oil mill effleunt", American Journal of Engineering and Applied
Sciences, Vol. 2, No. 1, (2009)
23-34.
42. I Nyoman, W. and Seno, J., "The kinetic
of biogas production rate from cattle manure in batch mode", International
Journal of Chemical and Biological Engineering, Vol. 3, No. 1, (2010), 39-45.
43. Syaichurrozi, I. and Sumardiono, S.,
"Biogas production kinetic from vinasse waste in batch mode anaerobic
digestion", World Applied Sciences Journal,
Vol. 26, No. 11, (2013), 1464-1472.
44. Syaichurrozi, I. and Sumardiono, S.,
"Kinetic model of biogas yield production from vinasse at various initial
ph: Comparison between modified gompertz model and first order kinetic
model", Research Journal of Applied Sciences, Engineering and Technology, Vol. 7, No. 13, (2014), 2798-2805.
45. Budiyono, B. and Sumardiono, S., "Effect
of total solid content to biogas production rate from vinasse", International
Journal of Engineering, Vol. 27,
No. 2, (2014), 177-184.
46. Syaichurrozi, I. and Sumardiono, S.,
"Predicting kinetic model of biogas production and biodegradability
organic materials: Biogas production from vinasse at variation of cod/n
ratio", Bioresource Technology,
Vol. 149, No., (2013), 390-397.
47. Lay, J.-J., Li, Y.-Y. and Noike, T.,
"Mathematical model for methane production from landfill bioreactor",
Journal
of Environmental Engineering,
Vol. 124, No. 8, (1998), 730-736.
48. Shin, J.-D., Han, S.-S., Eom, K.-C., Sung,
S.-H., Park, S.-W. and Kim, H.-O., "Predicting methane production
potential of anaerobic co-digestion of swine manure and food waste", Environmental
Engineering Research, Vol. 13,
No. 2, (2008), 93-97.
49. Adiga, S., Ramya, R., Shankar, B., Patil,
J.H. and Geetha, C., "Kinetics of anaerobic digestion of water hyacinth,
poultry litter, cow manure and primary sludge: A comparative study", International
Proceedings of Chemical, Biological and Environmental Engineering (IPCBEE), Vol. 42, No., (2012), 73-78.
50. Kaatze, U., "Fundamentals of
microwaves", Radiation Physics and Chemistry, Vol. 45, No. 4, (1995), 539-548.
51. Kodri, K., Dwiargo, B. and Yulianingsih, R.,
"Pemanfaatan enzim selulase dari trichoderma reseei dan aspergillus niger
sebagai katalisator hidrolisis enzimatik jerami padi dengan pretreatment
microwave", Jurnal Bioproses Komoditas Tropis, Vol. 1, No. 1, (2013) 54-61.
52. Taherzadeh, M.J. and Karimi, K.,
"Pretreatment of lignocellulosic wastes to improve ethanol and biogas
production: A review", International Journal of Molecular Sciences, Vol. 9, No. 9, (2008), 1621-1651.
53. Choudhary, R., Umagiliyage, A.L., Liang, Y.,
Siddaramu, T., Haddock, J. and Markevicius, G., "Microwave pretreatment
for enzymatic saccharification of sweet sorghum bagasse", Biomass
and Bioenergy, Vol. 39, (2012),
218-226.
54. Fengel, D. and Wegener, G., "Wood:
Chemistry, ultrastructure, reactions, Walter de Gruyter, (1983).
55. Bobleter, O., "Hydrothermal degradation
of polymers derived from plants", Progress in Polymer Science, Vol. 19, No. 5, (1994), 797-841.
56. Lu, Y., Yang, B., Gregg, D., Saddler, J.N.
and Mansfield, S.D., "Cellulase adsorption and an evaluation of enzyme
recycle during hydrolysis of steam-exploded softwood residues", Applied
Biochemistry and Biotechnology,
Vol. 98, No. 1-9, (2002), 641-654.
57. Zhang, Y.-H.P. and Lynd, L.R., "Toward
an aggregated understanding of enzymatic hydrolysis of cellulose: Noncomplexed
cellulase systems", Biotechnology and Bioengineering, Vol. 88, No. 7, (2004), 797-824.
58. Gregg, D. and Saddler, J.N., "A
techno-economic assessment of the pretreatment and fractionation steps of a
biomass-to-ethanol process", in Seventeenth Symposium on Biotechnology for
Fuels and Chemicals, Springer. (1996), 711-727.
59. Grethlein, H.E., "The effect of pore
size distribution on the rate of enzymatic hydrolysis of cellulosic
substrates", Nature Biotechnology,
Vol. 3, No. 2, (1985), 155-160.
60. Palonen, H., Thomsen, A.B., Tenkanen, M.,
Schmidt, A.S. and Viikari, L., "Evaluation of wet oxidation pretreatment
for enzymatic hydrolysis of softwood", Applied Biochemistry and Biotechnology, Vol. 117, No. 1, (2004), 1-17.
61. Drapcho, C.M., Nhuan, N.P. and Walker, T.H.,
"Biofuels engineering process technology, McGraw-Hill New York, NY,
USA:, (2008).
62. Sapci, Z., "The effect of microwave
pretreatment on biogas production from agricultural straws", Bioresource
Technology, Vol. 128, No.,
(2013), 487-494.
63. Chen, W.-H. and Kuo, P.-C.,
"Torrefaction and co-torrefaction characterization of hemicellulose,
cellulose and lignin as well as torrefaction of some basic constituents in
biomass", Energy, Vol. 36, No. 2,
(2011), 803-811.
64. Ahring, B.K., Jensen, K., Nielsen, P.,
Bjerre, A. and Schmidt, A., "Pretreatment of wheat straw and conversion of
xylose and xylan to ethanol by thermophilic anaerobic bacteria", Bioresource
Technology, Vol. 58, No. 2,
(1996), 107-113.
65. Stuckey, D.C. and McCARTY, P.L., "Thermochemical
pretreatment of nitrogenous materials to increase methane yield", in
Biotechnol. Bioeng. Symp.;(United States), Stanford Univ., CA. Vol. 8, (1978).
66. Penaud, V., Delgenes, J. and Moletta, R.,
"Thermo-chemical pretreatment of a microbial biomass: Influence of sodium
hydroxide addition on solubilization and anaerobic biodegradability", Enzyme
and Microbial Technology, Vol.
25, No. 3, (1999), 258-263.
67. Passos, F., Solé, M., García, J. and Ferrer,
I., "Biogas production from microalgae grown in wastewater: Effect of
microwave pretreatment", Applied Energy, Vol. 108, No., (2013), 168-175.
|
|
|
|
|