IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 956-963    Article in Press

downloaded Downloaded: 294   viewed Viewed: 2563

Y. Vazifeshenas, M. Farhadi, K. Sedighi and R. Shafaghat
( Received: April 23, 2014 – Accepted: June 11, 2015 )

Abstract    The purpose of this study is to investigate the performance and three-dimensional behavior of the flow in a mixed flow pump and the way cavitation phenomenon is affected by different parameters such as fluid temperature, pump speed and flow rate. Computational fluid dynamic software FLUENT 6.3 was utilized to simulate the whole flow field of the pump. RNG k-ε model combined with standard wall functions is chosen to deal with the turbulent feature of the problem. The studied pump has four blades mounted on a conical hub which form the rotary part and nine static vanes afterward as the stationary part. So the rotor-stator interaction was treated with a Multiple Reference Frame (MRF) technique. Different cases were analyzed for different flow rates and different pump speeds. While the flow rates variation and the pump revolution change cavitation occurrence widely, the temperature variations caused by weather changes during a year has little effect on cavitation. The cavitation region which is defined by the saturation pressure in that temperature was shown for various cases on a blade


Keywords    Mixed-flow pump, Multiple Reference Frame, Computational fluid dynamics, Cavitation


چکیده    هدف از این تحقیق ارزیابی عملکرد و رفتار سه بعدی جریان در یک پمپ جریان مختلط می باشد. همچنین چگونگی تاثیر پذیری پدیده کاویتاسیون از پارامترهای مختلف مانند دمای سیال، سرعت پمپ و نرخ جریان ورودی نیز مورد بررسی واقع می شود. برای شبیه سازی کل میدان جریان پمپ از نرم افزار دینامیک سیالات محاسباتی فلوئنت استفاده شده است. مدل توربولانسی RNG k-ε به همراه standard wall functions برای توجیه رفتار توربولانسی سیال بکار گرفته شده اند. پمپ مورد مطالعه شامل 4 پره که بر محور مخروطی سوار شده اند و بخش متحرک را تشکیل می دهند و 9 پره در پائین دست که نقش پره های ثابت را بازی می کنند، می شود. بنابراین برای شبیه سازی برهمکنش میان قسمت متحرک و ثابت از تکنیک چند چارچوب مرجع(MRF) استفاده شده است. حالت های مختلفی برای دبی جریان ورودی و سرعت پمپ مورد بررسی واقع شده است. نتایج نشان دادند در حالیکه دبی ورودی پمپ و دور پمپ تاثیر شایانی بر پدیده کاویتاسیون دارند، تغییرات دمایی که در فصول مختلف سال حاصل می شود تاثیر محسوسی بر چگونگی کاویتاسیون نداشته است. برای حالت های مختلف منطقه پیدایش کاویتاسیون روی پره بر اساس فشار اشباع آن دمای خاص نشان داده شده است.



1.     Zhang, D.-s., Shi, W.-d., Bin, C. and Guan, X.-f., "Unsteady flow analysis and experimental investigation of axial-flow pump", Journal of Hydrodynamics, Ser. B,  Vol. 22, No. 1, (2010), 35-43.

2.     Alpan, K. and Peng, W., "Suction reverse flow in an axial-flow pump", Journal of Fluids Engineering,  Vol. 113, No. 1, (1991), 90-97.

3.     Zierke, W., Farrell, K. and Straka, W., "Measurements of the tip clearance flow for a high-reynolds-number axial-flow rotor", Transactions-American Society of Mechanical Engineers Journal of Turbomachinery,  Vol. 117, No., (1995), 522-522.

4.     Zierke, W., Straka, W. and Taylor, P., "An experimental investigation of the flow through an axial-flow pump", Journal of Fluids Engineering,  Vol. 117, No. 3, (1995), 485-490.

5.     Dupont, P., Caignaert, G., Bois, G. and Schneider, T., "Rotor-stator interactions in a vaned diffuser radial flow pump", in ASME Fluids Engineering Division Summer Meeting, American Society of Mechanical Engineers. (2005), 1087-1094.

6.     Li, Y.-j. and Wang, F.-j., "Numerical investigation of performance of an axial-flow pump with inducer", Journal of Hydrodynamics, Ser. B,  Vol. 19, No. 6, (2007), 705-711.

7.     Fu, j.W., Yao, j.L. and Guo, h.C., "Cfd simulation of 3d flow in large-bore axial-flow pump with half-elbow suction sump [j]", Journal of Hydrodynamics, Ser. B,  Vol. 18, No. 2, (2006), 243-247.

8.     Fujun, W., Ling, Z. and Zhimin, Z., "Analysis on pressure fluctuation of unsteady flow in axial-flow pump", Journal of Hydraulic Engineering,  Vol. 38, No. 8, (2007), 1003-1009.

9.     Shigmitsu, T., Furukawa, A. And Watanabe, S., "Internal flow measurement with ldv at design point of contra-rotating axial flow pump nihon kikai gakkai ronbunshu", Transactions of the Japan Society of Mechanical Engineers, Part B,  Vol. 74, No. 5, (2008), 1091-1097.

10.   Watanabe, A., Yamashita, S. and Tsunenari, Y., "Flow measurement with ldv around rear rotor of contra-rotating axial flow pump at partial flow rate", Transactions of the Japan Society of Mechanical Engineers, Part B,  Vol. 74, No. 4, (2008), 850-855.

11.   Gao, H., Lin, W. and Du, Z., "An investigation of the flow and overall performance in a water-jet axial flow pump based on computational fluid dynamics and inverse design method", Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy,  Vol. 222, No. 5, (2008), 517-527.

12.   Chen, H.-X. And Zhu, B., "Analysis of numerical calculation on an axial-flow pump model with 0 installation angle ", Journal of Hydrodynamics (Ser. A),  Vol. 4, (2009), 014.

13.   Fan, H.-M., Hong, F.-W., Zhou, L.-D., Chen, Y.-S., Liang, Y. and LIU, Z.-m., "Design of implantable axial-flow blood pump and numerical studies on its performance", Journal of Hydrodynamics, Ser. B,  Vol. 21, No. 4, (2009), 445-452.

14.   Huanming, H. and Hong, G., "Numerical simulation and experimental study on flow field in an axial flow pump", Journal of Shanghai Jiaotong University,  Vol. 43, No. 1, (2009), 124-128.

15.   Shu, J.-J., "Modelling vaporous cavitation on fluid transients", International Journal of Pressure Vessels and Piping,  Vol. 80, No. 3, (2003), 187-195.

16.   Čudina, M. and Prezelj, J., "Detection of cavitation in situ operation of kinetic pumps: Effect of cavitation on the characteristic discrete frequency component", Applied Acoustics,  Vol. 70, No. 9, (2009), 1175-1182.

17.   Peng, Y.-C., Chen, X.-Y., Yan, C. and Hou, G.-X., "Numerical study of cavitation on the surface of the guide vane in three gorges hydropower unit", Journal of Hydrodynamics, Ser. B,  Vol. 22, No. 5, (2010), 703-708.

18.   Escaler, X., Egusquiza, E., Farhat, M., Avellan, F. and Coussirat, M., "Detection of cavitation in hydraulic turbines", Mechanical Systems and Signal Processing,  Vol. 20, No. 4, (2006), 983-1007.

19.   Jazi, A.M. and Rahimzadeh, H., "Detecting cavitation in globe valves by two methods: Characteristic diagrams and acoustic analysis", Applied Acoustics,  Vol. 70, No. 11, (2009), 1440-1445.

20.   Mettin, R., Luther, S., Ohl, C.-D. and Lauterborn, W., "Acoustic cavitation structures and simulations by a particle model", Ultrasonics Sonochemistry,  Vol. 6, No. 1, (1999), 25-29.

21.   Dular, M., Bachert, B., Stoffel, B. and Širok, B., "Relationship between cavitation structures and cavitation damage", Wear,  Vol. 257, No. 11, (2004), 1176-1184.

22.   De, M.L., Shu, H.L. And Yu, L.W., "Les numerical simulation of cavitation bubble shedding on ale 25 and ale 15 hydrofoils ", Journal of Hydrodynamics,  Vol. 21, No. 6, (2009), 807-813.

23.   Pouffary, B., Patella, R.F., Reboud, J.-L. and Lambert, P.-A., "Numerical simulation of 3d cavitating flows: Analysis of cavitation head drop in turbomachinery", Journal of Fluids Engineering,  Vol. 130, No. 6, (2008), 061301.

24.   Ye, J.-M. And Xiong, Y., "Prediction of podded propeller cavitation using an unsteady surface panel method", Journal of Hydrodynamics, Ser. B,  Vol. 20, No. 6, (2008), 790-796.

25.   Mirbagheri, S. and Mansouri, M., "Solution of flow field equations and verification of cavitations problem on spillway of the dam", International Journal of Engineering-Materials And Energy Research Center-,  Vol. 18, No. 1, (2005), 97.

26.   Sadrnezhad, S., "Numerical solution for gate induced vibration due to under flow cavitation", International Journal of Engineering,  Vol. 14, No. 3, (2001), 183-194.

27.   Gavzan, I.J. and Rad, M., "Influence of afterbody and boundary layer on cavitating flow", International Journal of Engineering-Transactions B: Applications,  Vol. 22, No. 2, (2009), 185-194.

28.   Choudhury, D., "Introduction to the renormalization group method and turbulence modeling, Fluent Incorporated,  (1993).

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir