IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 913-921    Article in Press

downloaded Downloaded: 409   viewed Viewed: 2557

S. A. Torabi and I. Shokr
( Received: February 04, 2015 – Accepted: June 11, 2015 )

Abstract    Material selection is one of the major problems in manufacturing environments since the improper selected material may lead to fail in the production processes and result in customer dissatisfaction and cost inefficiency. Every material has different properties which should be considered as major criteria during the material selection procedure. Selection criteria could be quantitative or qualitative. Quantifying the performance measures of qualitative criteria is an inevitable issue in the multi criteria decision making (MCDM) problems. In this paper, the common weight data envelopment analysis (CWDEA) model proposed by Hatefi et al. [27] is applied for material selection problem which accounts for both quantitative and qualitative criteria in an effective manner. However, through a numerical example borrowed from the literature, it is shown that the proposed method by Hatefi et al. [27] is not able to produce a full ranking vector our problem. Accordingly, the problem is resolved under different normalization methods and the resulting ranking vectors are then aggregated by the linear assignment method.


Keywords    Material selection, Data envelopment analysis (DEA), Multi-criteria decision making (MCDM)


چکیده    انتخاب مواد اولیه مناسب یکی از مسائل چالش برانگیز در محیط‌های تولیدی است که انتخاب نامناسب مواد اولیه می تواند باعث شکست در فرآیندهای تولیدی شود و تبعاتی همچون هزینه بر بودن تولید و نارضایتی مصرف کنندگان را به همراه خواهد داشت. هر یک از مواد اولیه خصوصیات مختلفی دارند که باید در هنگام انتخاب بهترین ماده اولیه مد نظر قرار گیرند. برخی از این معیارها کیفی و برخی دیگر کمی هستند. کمی سازی معیارهای کیفی در تکنیک های تصمیم‌گیری چند معیاره همواره از چالش‌های اصلی این حوزه بوده است. در این مقاله از روش تحلیل پوششی داده‌ها با اوزان مشترک (هاتفی و همکاران [23]) در مسئله انتخاب مواد اولیه مناسب استفاده شده است. همچنین یک مثال به عنوان نمونه حل شده است و نشان داده شده است که روش فوق قادر به ارائه رتبه بندی کامل نیست. برای غلبه بر این مشکل، مسئله با استفاده از روش‌های نرمال‌سازی مختلف توسط روش مذکور حل شده است و در انتها با استفاده از یک روش ادغام‌سازی مبتی بر برنامه‌ریزی خطی، رتبه بندی کامل بدست آمده است.



1.     Edwards, K., "Selecting materials for optimum use in engineering components", Materials & Design,  Vol. 26, No. 5, (2005), 469-473.

2.     Deng, Y.-M. and Edwards, K., "The role of materials identification and selection in engineering design", Materials & Design,  Vol. 28, No. 1, (2007), 131-139.

3.     Rao, R.V. and Davim, J., "A decision-making framework model for material selection using a combined multiple attribute decision-making method", The International Journal of Advanced Manufacturing Technology,  Vol. 35, No. 7-8, (2008), 751-760.

4.     Ramanathan, R., "Abc inventory classification with multiple-criteria using weighted linear optimization", Computers & Operations Research,  Vol. 33, No. 3, (2006), 695-700.

5.     Jee, D.-H. and Kang, K.-J., "A method for optimal material selection aided with decision making theory", Materials & Design,  Vol. 21, No. 3, (2000), 199-206.

6.     Shanian, A. and Savadogo, O., "Topsis multiple-criteria decision support analysis for material selection of metallic bipolar plates for polymer electrolyte fuel cell", Journal of Power Sources,  Vol. 159, No. 2, (2006), 1095-1104.

7.     Kaboli, A., Aryanezhad, M., Shahanaghi, K. and Tavakkoli-Moghaddam, R., "A holistic approach based on mcdm for solving location problems", International Journal of Engineering Transactions A Basics,  Vol. 20, No. 3, (2007), 251-261.

8.     Mousavi, S., Makoui, A., Raissi, S. and Mojtahedi, S., "A multi-criteria decision-making approach with interval numbers for evaluating project risk responses", International Journal of Engineering-Transactions B: Applications,  Vol. 25, No. 2, (2012), 121-130.

9.     Jahan, A., Bahraminasab, M. and Edwards, K., "A target-based normalization technique for materials selection", Materials & Design,  Vol. 35, No., (2012), 647-654.

10.   Jahan, A., Mustapha, F., Ismail, M.Y., Sapuan, S. and Bahraminasab, M., "A comprehensive vikor method for material selection", Materials & Design,  Vol. 32, No. 3, (2011), 1215-1221.

11.   Tavakkoli-Moghaddam, R., Heydar, M. and Mousavi, S., "An integrated ahp-vikor methodology for plant location selection", International Journal of Engineering-Transactions B: Applications,  Vol. 24, No. 2, (2011), 127.

12.   Chatterjee, P., Athawale, V.M. and Chakraborty, S., "Selection of materials using compromise ranking and outranking methods", Materials & Design,  Vol. 30, No. 10, (2009), 4043-4053.

13.   Khabbaz, R.S., Manshadi, B.D., Abedian, A. and Mahmudi, R., "A simplified fuzzy logic approach for materials selection in mechanical engineering design", Materials & Design,  Vol. 30, No. 3, (2009), 687-697.

14.   Milani, A. and Shanian, A., "Gear material selection with uncertain and incomplete data. Material performance indices and decision aid model", International Journal of Mechanics and Materials in Design,  Vol. 3, No. 3, (2006), 209-222.

15.   Shanian, A. and Savadogo, O., "A non-compensatory compromised solution for material selection of bipolar plates for polymer electrolyte membrane fuel cell (PEMFC) using electre iv", Electrochimica Acta,  Vol. 51, No. 25, (2006), 5307-5315.

16.   Jiao, Q., Lan, Y., Guan, Z. and Li, Z., "A new material selection approach using promethee method", in Electronic and Mechanical Engineering and Information Technology (EMEIT), International Conference on, IEEE. Vol. 6,  (2011), 2950-2954.

17.   Chan, J.W. and Tong, T.K., "Multi-criteria material selections and end-of-life product strategy: Grey relational analysis approach", Materials & Design,  Vol. 28, No. 5, (2007), 1539-1546.

18.   Milani, A., Shanian, A., Lynam, C. and Scarinci, T., "An application of the analytic network process in multiple criteria material selection", Materials & Design,  Vol. 44, (2013), 622-632.

19.   Milani, A., Shanian, A., Madoliat, R. and Nemes, J., "The effect of normalization norms in multiple attribute decision making models: A case study in gear material selection", Structural and Multidisciplinary Optimization,  Vol. 29, No. 4, (2005), 312-318.

20.   Chatterjee, P. and Chakraborty, S., "Material selection using preferential ranking methods", Materials & Design,  Vol. 35, (2012), 384-393.

21.   Chatterjee, P., Athawale, V.M. and Chakraborty, S., "Materials selection using complex proportional assessment and evaluation of mixed data methods", Materials & Design,  Vol. 32, No. 2, (2011), 851-860.

 22.   Maniya, K. and Bhatt, M., "A selection of material using a novel type decision-making method: Preference selection index method", Materials & Design,  Vol. 31, No. 4, (2010), 1785-1789.

23.   Mayyas, A., Shen, Q., Mayyas, A., Shan, D., Qattawi, A. and Omar, M., "Using quality function deployment and analytical hierarchy process for material selection of body-in-white", Materials & Design,  Vol. 32, No. 5, (2011), 2771-2782.

24.   Cavallini, C., Giorgetti, A., Citti, P. and Nicolaie, F., "Integral aided method for material selection based on quality function deployment and comprehensive vikor algorithm", Materials & Design,  Vol. 47, (2013), 27-34.

25.   Yang, S. and Ju, Y., "A novel multiple attribute material selection approach with uncertain membership linguistic information", Materials & Design,  Vol. 63, (2014), 664-671.

26.   Liu, H.-C., You, J.-X., Zhen, L. and Fan, X.-J., "A novel hybrid multiple criteria decision making model for material selection with target-based criteria", Materials & Design,  Vol. 60, (2014), 380-390.

27.   Liu, H.-C., Liu, L. and Wu, J., "Material selection using an interval 2-tuple linguistic vikor method considering subjective and objective weights", Materials & Design,  Vol. 52, No., (2013), 158-167.

28.   Peng, A.-H. and Xiao, X.-M., "Material selection using promethee combined with analytic network process under hybrid environment", Materials & Design,  Vol. 47, (2013), 643-652.

29.   Anojkumar, L., Ilangkumaran, M. and Sasirekha, V., "Comparative analysis of mcdm methods for pipe material selection in sugar industry", Expert Systems with Applications,  Vol. 41, No. 6, (2014), 2964-2980.

30.   Jahan, A., Ismail, M.Y., Mustapha, F. and Sapuan, S.M., "Material selection based on ordinal data", Materials & Design,  Vol. 31, No. 7, (2010), 3180-3187.

31.   Athawale, V.M., Kumar, R. and Chakraborty, S., "Decision making for material selection using the uta method", The International Journal of Advanced Manufacturing Technology,  Vol. 57, No. 1-4, (2011), 11-22.

32.   Hatefi, S., Torabi, S. and Bagheri, P., "Multi-criteria abc inventory classification with mixed quantitative and qualitative criteria", International Journal of Production Research,  Vol. 52, No. 3, (2014), 776-786.

33.   Cook, W.D., Kress, M. and Seiford, L.M., "Data envelopment analysis in the presence of both quantitative and qualitative factors", Journal of the Operational Research Society, , (1996), 945-953.

34.   Jahan, A. and Edwards, K.L., "A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design", Materials & Design,  Vol. 65, (2015), 335-342.

35.   Jahan, A., Ismail, M.Y., Shuib, S., Norfazidah, D. and Edwards, K., "An aggregation technique for optimal decision-making in materials selection", Materials & Design,  Vol. 32, No. 10, (2011), 4918-4924.  

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir