IJE TRANSACTIONS C: Aspects Vol. 28, No. 6 (June 2015) 855-863    Article in Press

downloaded Downloaded: 238   viewed Viewed: 2608

M. Amini
( Received: January 21, 2015 – Accepted: June 11, 2015 )

Abstract    The objective of this paper is simultaneous of aerobic and anaerobic process for phosphorus removal from a dairy wastewater. The system consists of a granular sequencing batch reactor (SBR) working under alternating aerobic/anaerobic conditions. In order to analyze the process, four significant variables viz. MLSS, COD/N ratio, aeration time and cycling time and four dependent parameters as the process responses were studied using a central composite design (CCD) under response surface methodology (RSM). The percentage removal of PO43- and amount of SVI, MLSS, MLVSS, in batch runs were 98.34%, 44.03 ml/g, 5646.97 mg/l and 4435.99 mg/l, respectively. This study shows that the high removal of phosphors from dairy wastewater with microbial granules cultivated under the alternating aerobic–anaerobic conditions has been achieved successfully in batch systems.


Keywords    Keywords: phosphors removal percentage, dairy wastewater treatment, batch systems, RSM کلمات کلیدی: درصد حذف فسفر، 


چکیده    موضوع این مقاله حذف فسفر از فاضلاب صنایع لبنی در شرایط همزمان هوازی – بی هوازی است. سیستم رآکتور ناپیوسته حاوی گرانول های لجن تحت شرایط متغییر هوازی و بی هوازی می باشد. به منظور بررسی فرآیند تصفیه چهار فاکتور مهم جامدات معلق در محلول (MLSS)، نسبت اکسیژن خواهی شیمیایی در محلول به مقدار نیتروژن محلول(COD/N ratio)، زمان هوادهی و مدت زمان چرخه تصفیه موردنظر بودند. تاثیر چهار متغییر وابسته بر روی فاکتورهای ذکر شده در نرم افزار DOE با روش جذب سطحی (RSM) با استفاده از نقاط مرکزی (CCD) طراحی و در آزمایشات استفاده شدند. درصد حذف PO43- ، مقدار SVI ، MLSS و MLVSS در آزمایشات ناپیوسته به ترتیب 34/98% ، 03/44 ، mg/l 97/5646 و mg/l 99/4435 به دست آمدند. این مطالعه نشان داد که درصد بالای حذف فسفر از فاضلاب صنایع لبنی با استفاده از گرانول های میکروبی فعال تحت شرایط متغییر هوازی بی هوازی به طور موفقییا آمیزی در سیستم تصفیه ناپیوسته قابل انجام است.



1.     Li, Z.H., Yang, K., Yang, X.J. and Li, L., "Treatment of municipal wastewater using a contact oxidation filtration separation integrated bioreactor", Journal of Environmental Management,  Vol. 91, No. 5, (2010), 1237-1242.

2.     Aguado, D., Montoya, T., Borras, L., Seco, A. and Ferrer, J., "Using som and pca for analysing and interpreting data from a p-removal sbr", Engineering Appllied Artificial Intelligence.,  Vol. 21, No. 6, (2008), 919-930.

3.     Kim, H.-G., Jang, H.-N., Kim, H.-M., Lee, D.-S., Eusebio, R.C., Kim, H.-S. and Chung, T.-H., "Enhancing nutrient removal efficiency by changing the internal recycling ratio and position in a pilot-scale mbr process", Desalination,  Vol. 262, No. 1-3, (2010), 50-56.

4.     Demirel, B., Yenigun, O. and Onay, T.T., "Anaerobic treatment of dairy wastewaters: A review", Process Biochemistry,  Vol. 40, No. 8, (2005), 2583-2595.

5.     Juang, Y.-C., Lee, D.-J. and Lai, J.-Y., "Fouling layer on hollow-fibre membrane in aerobic granule membrane bioreactor", Journal of Chinese Institut Chemical Engineering,  Vol. 39, No. 6, (2008), 657-661.

6.     Najafpour, G.D., Basu, R., Clausen, E.C. and Gaddy, G.L., "Bioreactor scale-up for water-gas shift reaction", International Journal of Engineering,  Vol. 9, No. 3, (1996), 121-129.

7.     Hill, C. and Khan, E., "A comparative study of immobilized nitrifying and co-immobilized nitrifying and denitrifying bacteria for ammonia removal from sludge digester supernatant", Water, Air, Soil Pollution,  Vol. 195, No. 1, (2008), 23-33.

8.     Asadi, A., Zinatizadeh, A.A.L., Sumathi, S., Rezaie, N. and Kiani, S., "A comparative study on performance of two aerobic sequencing batch reactors with flocculated and granulated sludge treating an industrial estate wastewater: Process analysis and modeling", International Journal of Engineering,  Vol. 26, No. 2, (2013), 105-116.

9.     Zinatizadeh, A.A., Bonakdari, H., Pirsaheb, M. and Gharacheh, E., "Response surface analysis and statistical modeling of sulfide generation from municipal wastewater", CLEAN – Soil, Air, Water,  Vol. 39, No. 5, (2011), 444-459.

10.   Mohammadi, M., Mohamed, A.R., Najafpour, G.D., Younesi, H. and Uzir, H., "Effect of organic substrate on promoting solventogenesis in ethanologenic acetone clostridium", International Journal of Engineering,  Vol. 27, No. 2, (2014), 185-194.

11.   Hasan, H.A., Abdullah, S.R.S., Kamarudin, S.K. and Kofli, N.T., "Response surface methodology for optimization of simultaneous cod, nh4+-n and mn2+ removal from drinking water by biological aerated filter", Desalination,  Vol. 275, No. 1-3, (2011), 50-61.

12.   Wang, Q., Du, G. and Chen, J., "Aerobic granular sludge cultivated under the selective pressure as a driving force", Process Biochemistry,  Vol. 39, No. 5, (2004), 557-563.

13.   Amini, M. and Younesi, H., "Biosorption of cd(ii), ni(ii) and pb(ii) from aqueous solution by dried biomass of aspergillus niger: Application of response surface methodology to the optimization of process parameters", CLEAN - Soil, Air, Water,  Vol. 37, No. 10, (2009), 776-786.

14.   Bajaj, M., Gallert, C. and Winter, J., "Effect of phenol addition on cod and nitrate removal in an anoxic suspension reactor", Bioresource Technology,  Vol. 101, No. 14, (2010), 5159-5167.

15.   Gao, D., Liu, L., liang, H. and Wu, W.-M., "Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors", Journal of Hazardous Materials,  Vol. 186, No. 1, (2011), 320-327.

16.   APHA, "Standard methods for the examination of water and wastewater, ed. t. ed, Washington,DC, American Public Health Association,  (1999).

17.   Zhu, L., Xu, X., Luo, W., Tian, Z., Lin, H. and Zhang, N., "A comparative study on the formation and characterization of aerobic 4-chloroaniline-degrading granules in sbr and sabr", Applied Microbiology and Biotechnology,  Vol. 79, No. 5, (2008), 867-874.

18.   Wang, S.-G., Liu, X.-W., Zhang, H.-Y., Gong, W.-X., Sun, X.-F. and Gao, B.-Y., "Aerobic granulation for 2,4-dichlorophenol biodegradation in a sequencing batch reactor", Chemosphere,  Vol. 69, No. 5, (2007), 769-775.

19.   Liu, J., Zuo, J.e., Yang, Y., Zhu, S., Kuang, S. and Wang, K., "An autotrophic nitrogen removal process: Short-cut nitrification combined with anammox for treating diluted effluent from an uasb reactor fed by landfill leachate", Journal of Environmental Science,  Vol. 22, No. 5, (2010), 777-783.

20.   Amini, M., Younesi, H. and Bahramifar, N., "Biosorption of nickel(ii) from aqueous solution by aspergillus niger: Response surface methodology and isotherm study", Chemosphere,  Vol. 75, No. 11, (2009), 1483-1491.

21.   Amini, M., Younesi, H., Bahramifar, N., Lorestani, A.A.Z., Ghorbani, F., Daneshi, A. and Sharifzadeh, M., "Application of response surface methodology for optimization of lead biosorption in an aqueous solution by aspergillus niger", Journal of Hazardous Materials,  Vol. 154, No. 1-3, (2008), 694-702.

22.   Zhang, H., Dong, F., Jiang, T., Wei, Y., Wang, T. and Yang, F., "Aerobic granulation with low strength wastewater at low aeration rate in a/o/a sbr reactor", Enzyme and Microb Technolgy,  Vol. 49, No. 2, (2011), 215-222.

23.   Amini, M., Younesi, H. and Bahramifar, N., "Statistical modeling and optimization of the cadmium biosorption process in an aqueous solution using aspergillus niger", Colloids and Surfaces A: Physicochemical and Engineering Aspects,  Vol. 337, No. 1-3, (2009), 67-73.

24.   Ghorbani, F., Younesi, H., Ghasempouri, S.M., Zinatizadeh, A.A., Amini, M. and Daneshi, A., "Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by saccharomyces cerevisiae", Chemical Engineering Journal,  Vol. 145, No. 2, (2008), 267-275.

25.   Monclús, H., Sipma, J., Ferrero, G., Comas, J. and Rodriguez-Roda, I., "Optimization of biological nutrient removal in a pilot plant uct-mbr treating municipal wastewater during start-up", Desalination,  Vol. 250, No. 2, (2010), 592-597.

26.   Zhou, Y., Pijuan, M. and Yuan, Z., "Development of a 2-sludge, 3-stage system for nitrogen and phosphorous removal from nutrient-rich wastewater using granular sludge and biofilms", Water Research,  Vol. 42, No. 12, (2008), 3207-3217.

27.   Yilmaz, G., Lemaire, R., Keller, J. and Yuan, Z., "Simultaneous nitrification, denitrification, and phosphorus removal from nutrient-rich industrial wastewater using granular sludge", Biotechnology and Bioengineering,  Vol. 100, No. 3, (2008), 529-541.

28.   Liu, Y. and Tay, J.-H., "State of the art of biogranulation technology for wastewater treatment", Biotechnolgy Advances,  Vol. 22, No. 7, (2004), 533-563.

29.   Qin, L. and Liu, Y., "Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic-anaerobic sequencing batch reactor", Chemosphere,  Vol. 63, No. 6, (2006), 926-933.

30.   Yang, S., Yang, F., Fu, Z. and Lei, R., "Comparison between a moving bed membrane bioreactor and a conventional membrane bioreactor on organic carbon and nitrogen removal", Bioresource Technology,  Vol. 100, No. 8, (2009), 2369-2374.

31.   Xia, L.-P., Zhang, H.-M. and Wang, X.-H., "An effective way to select slow-growing nitrifying bacteria by providing a dynamic environment", Bioprocces Biosystem Engineering,  Vol. 30, No. 6, (2007), 383-388.

32.   Dulekgurgen, E., Ovez, S., Artan, N. and Orhon, D., "Enhanced biological phosphate removal by granular sludge in a sequencing batch reactor", Biotechnolgy Letters,  Vol. 25, No. 9, (2003), 687-693.

33.   Cassidy, D.P. and Belia, E., "Nitrogen and phosphorus removal from an abattoir wastewater in a sbr with aerobic granular sludge", Water Research,  Vol. 39, No. 19, (2005), 4817-4823.


International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir