Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 29, No. 1 (January 2016) 87-95    Article in Press

downloaded Downloaded: 162   viewed Viewed: 2242

  NUMERICAL SIMULATION OF FLASH BOILING EFFECT IN A 3-DIMENSIONAL CHAMBER USING CFD TECHNIQUES
 
S. Jafarmadar and A. Jahangiramini
 
( Received: March 01, 2015 – Accepted: January 05, 2016 )
 
 

Abstract    Flash Boiling atomization is one of the most effective means of generating a fine and narrow-dispersed spray. Unless its complexity its potential has not been fully realized. In This Paper, a three dimensional chamber has been modeled with a straight fuel injector. Effect of Flash Boiling has been investigated by computational fluid dynamics (CFD) techniques. A finite volume approach with the standard k–ε turbulence model has been used to carry out all the computations. The dimensions of studied vortex tubes are kept the same for all models. Finally, some results of the CFD models are validated by the available experimental data which show reasonable agreement, and other ones are compared qualitatively. It was confirmed that flash-boiling effectively accelerated the atomization and vaporization of fuel droplets

 

Keywords    Flash Boiling, Numerical simulation, Bubble nucleation, Fuel properties

 

چکیده    اتميزاسيون به روش جوشش سريع يكي از فرايندهاي مهم در توليد اسپري مي باشد برخلاف پيچيدگي آن توانايي اين فرايند تاكنون به خوبي كشف نشده است. در اين بررسي، يك محفظه 3 بعدي با يك نازل سوخت مستقيم مدلسازي گرديده است. تاثير پديده جوشش سريع با استفاده از روش ديناميك سيالات محاسباتي مطالعه شده و يك روش حجم محدود با بكارگيري مدل استاندارد توربولانس k–ε براي حل معادلات بكارگيري شده است. ابعاد مدل­هاي ساخته شده براي تمامي حالات يكسان در نظر گرفته شده است. در نهايت نتايج كار عددي حاصل با نتايج كارهاي تجربي موجود مقايسه و نتيجه حاصل رضايت بخش مي باشد. بررسي حاصل نشان دهنده اين واقعيت مي باشد كه پديده جوشش سريع شديداً اتميزاسيون و تبخير قطرات سوخت را شتاب مي دهد.

References   

 

1.     Oza, R.D. and Sinnamon, J.F., An experimental and analytical study of flash-boiling fuel injection. 1983, SAE Technical Paper.

2.     Gerrish, H.C. and Ayer, B.E., "Influence of fuel-oil temperature on the combustion in a prechamber compression-ignition engine", (1936).

3.     Kim, Y., Iwai, N., Suto, H. and Tsuruga, T., Improvement of alcohol engine performance by flash boiling injection. 1980.

4.     Wu, K., Steinberger, R. and Bracco, F., "On the mechanism of breakup of highly superheated liquid jets", Paper No. CSS/CI,  Vol., No., (1981), 81-17.

5.     Park, B.S. and Lee, S.Y., "An experimental investigation of the flash atomization mechanism", Atomization and Sprays,  Vol. 4, No. 2, (1994).

6.     Reitz, R.D., "A photographic study of flash-boiling atomization", Aerosol Science and Technology,  Vol. 12, No. 3, (1990), 561-569.

7.     Zuo, B., Gomes, A. and Rutland, C., "Modelling superheated fuel sprays and vaproization", International Journal of Engine Research,  Vol. 1, No. 4, (2000), 321-336.

8.     Fujimoto, H., Mishikori, T., Tsukamoto, T. and Senda, J., "Modeling of atomization and vaporization process in flash boiling spray", ICLASS-94, Paper VI-13,, (1994).

9.     Kawano, D., Ishii, H., Suzuki, H., Goto, Y., Odaka, M. and Senda, J., "Numerical study on flashboiling spray of multicomponent fuel", Heat Transfer—Asian Research,  Vol. 35, No. 5, (2006), 369-385.

10.   Zeng, Y. and Lee, C.-F.F., "An atomization model for flash boiling sprays", Combustion science and technology,  Vol. 169, No. 1, (2001), 45-67.

11.   Sato, K., Lee, C. and Nagai, N., "A study on atomization process of superheated liquid", Trans. JSME (B),  Vol. 50, No. 455, (1984), 1743-1752.

12.   Nakamura, K. and Someya, T., "Investigation on the tensile strength of real liquids", Trans. JSME (B),  Vol. 46, No. 405, (1987), 910-917.

13.   Van Stralen, S. and Cole, R., "Boiling phenomena: Physicochemical and engineering fundamentals and applications, Hemisphere,  Vol. 2,  (1979).

14.   Adachi, M., McDonell, V.G., Tanaka, D., Senda, J. and Fujimoto, H., Characterization of fuel vapor concentration inside a flash boiling spray. 1997, SAE Technical Paper.

15.   Plesset, M. S., Cavitation in Real Liquids, Amer. Elsevrer Pub. (New York), p.1, (1964).

16.   Ida, T. and Sugiya, T., "Motion of air bubbles in mineral oils subject to sudden change in chamber pressure (1st report, experimental analysis for single bubbles)(in japanese)", Transactions of JSME 45–399,  Vol., No., (1979), 1650-1657.

17.   Scriven, L., "Dynamics of a fluid interface equation of motion for newtonian surface fluids", Chemical Engineering Science,  Vol. 12, No. 2, (1960), 98-108.

18.   Suma, S. and Koizumi, M., "Internal boiling atomization by rapid pressure reduction of liquids", Transactions of the Japanese Society of Mechanical Engineers,  Vol. 43, No. 376, (1977), 4608-4617.

19.   Kawano, D., Azechi, N., Senda, J. and Fujimoto, H., “Spray Characteristics of Multicomponent Fuel”, The 10th International Symposium on Flow Visualization, F0219, (2002).

20.   Akihama, K., Fujikawa, T. and Hattori, Y., "Simultaneous laser-induced fluorescence measurements of in-cylinder fuel behavior of different boiling point components", in Proc. 15th Internal Combustion Engine Symposium (International), Seoul. Issue, (1999), 577-582.

21.   Styron, J.P., Kelly-Zion, P., Lee, C.-F., Peters, J., White, R.A. and Lucht, R., Multicomponent liquid and vapor fuel distribution measurements in the cylinder of a port-injected, spark-ignition engine. 2000, SAE Technical Paper.

22.   Kawano, D., Senda, J., Wada, Y., Fujimoto, H., Goto, Y., Odaka, M., Ishii, H. and Suzuki, H., Numerical simulation of multicomponent fuel spray. 2003, SAE Technical Paper.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir