Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 29, No. 1 (January 2016) 78-86    Article in Press

downloaded Downloaded: 358   viewed Viewed: 2852

  EXPERIMENTAL AND FINITE ELEMENT SIMULATION OF NANO-INDENTATION ON METAL MATRIX COMPOSITES: HARDNESS PREDICTION
 
A. Wagih
 
( Received: February 23, 2015 – Accepted: December 24, 2015 )
 
 

Abstract    The scientifi c importance of nanocomposites are being increased due to their improvedproperties. This paper is divided into two parts. First, Al-Al2O3 nanocomposite wasproduced by using ball milling technique followed by cold compaction and sintering.Microstructure and morphology studies were done through SEM, TEM, and EDX anal-ysis on the produced powder. The mechanical properties of the produced compositewere determined by the tensile test. Also, nano-indentation experiment was conductedon the produced composite to determine its hardness. Second, a 2-D axisymmetrymodel was implemented in ANSYS software to simulate the nano-indentation experi-ment on pure aluminum and Al-Al2O3 nanocomposite. A conical indenter with 70.3was considered in simulations. The results show that, a homogenous distribution of thereinforcement in the matrix was achieved after 20 h milling. The elastic modulus, yieldstrength, and the hardness of the produced composite were increased than the puremetal. The FE simulation results show a good agreement with the experimental resultsfor nano-indentation experiment. The scatter of the FE results from the experimentalresults in the pure metal is smaller than that observed for the nanocomposite.

 

Keywords    Nanocomposite, Mechanical milling, FE simulation, Hardness

 

چکیده    اهمیت علمی نانوکامپوزیتها به دلیل خواص بهبود یافته آنها در حال افزایش است. این مقاله به دو قسمت تقسیم شده است. اول، نانوکامپوزیت Al2O3- Al با استفاده از روش آسیاب گلوله ای و سپس تراکم سرد و گداختن تولید شد. مطالعه ریزساختار و مورفولوژی از طریق آنالیز SEM، TEM و EDX پودر تولید شده انجام شد. خواص مکانیکی کامپوزیت تولید شده توسط تست کششی تعیین شد. همچنین، آزمایش نانو فرورفتگی روی کامپوزیت تولید شده برای تعیین سختی آن انجام شد. دوم، یک مدل متقارن دوبعدی در نرم افزار ANSYS برای شبیه سازی آزمایش نانو دندانه بر روی آلومینیوم خالص و نانوکامپوزیت Al- Al2O3 اجرا شد. یک گوه مخروطی ◦70.3 در شبیه سازی در نظر گرفته شد. نتایج نشان می دهد که توزیع همگنی از سوخت در ماتریس پس از 20 ساعت آسیاب به دست آمد. مدول الاستیک، استحکام تسلیم و سختی کامپوزیت تولید شده در مقایسه با فلز خالص افزایش یافت. نتایج شبیه سازی المان محدود توافق خوبی با نتایج تجربی برای آزمایش نانو دندانه نشان داد. پراکندگی نتایج المان محدود از نتایج تجربی در فلز خالص کمتر از مقداری بود که برای نانوکامپوزیت مشاهده شد.

References   

 

1.     Ibrahim, I., Mohamed, F. and Lavernia, E., "Particulate reinforced metal matrix composites—a review", Journal of Materials Science,  Vol. 26, No. 5, (1991), 1137-1156.

2.     Klier, E.M., Mortensen, A., Cornie, J. and Flemings, M., "Fabrication of cast particle-reinforced metals via pressure infiltration", Journal of Materials Science,  Vol. 26, No. 9, (1991), 2519-2526.

3.     Yang, J. and Chung, D., "Casting particulate and fibrous metal-matrix composites by vacuum infiltration of a liquid metal under an inert gas pressure", Journal of Materials Science  Vol. 24, No. 10, (1989), 3605-3612.

4.     Liu, Y., Lim, S., Lu, L. and Lai, M., "Recent development in the fabrication of metal matrix-particulate composites using powder metallurgy techniques", Journal of Materials Science  Vol. 29, No. 8, (1994), 1999-2007.

5.     Mazen, A. and Ahmed, A., "Mechanical behavior of al-al2o3 mmc manufactured by pm techniques part i—scheme i processing parameters", Journal of Materials Engineering and Performance,  Vol. 7, No. 3, (1998), 393-401.

6.     Wagih, A., "Mechanical properties of al–mg/al 2 o 3 nanocomposite powder produced by mechanical alloying", Advanced Powder Technology,  Vol. 26, No. 1, (2015), 253-258.

7.     Hosseingholi, M., Hosseinnia, A. and Pazouki, M., "Room temperature synthesis of n-doped urchin-like rutile tio2 nanostructure with enhanced photocatalytic activity under sunlight".

8.     M, K. and H., S., " Zinc adsorption properties of alginate-sbs-15 nanocomposite.", International Journal of Engeneering,  Vol. 28, No. 10 (2015), 1415-1422.

9.     Ayatollahi, M.R., DoagouRad, S. and Shadlou, S., "Nano/microscale investigation of tribological and mechanical properties of epoxy/mwnt nanocomposites", Macromolecular Materials and Engineering,  Vol. 297, No. 7, (2012), 689-701.

10.   Karimzadeh, A. and Ayatollahi, M., "Investigation of mechanical and tribological properties of bone cement by nano-indentation and nano-scratch experiments", Polymer Testing,  Vol. 31, No. 6, (2012), 828-833.

11.   Boroumandnia, A., Kasaeian, A., Nikfarjam, A. and Mohammadpour, R., "Effect of tio2 nanofiber density on organic-inorganic based hybrid solar cells", International Journal of Engineering,  1025-2495.

12.   Sun, Y., Bell, T. and Zheng, S., "Finite element analysis of the critical ratio of coating thickness to indentation depth for coating property measurements by nanoindentation", Thin solid films,  Vol. 258, No. 1, (1995), 198-204.

13.   Bolshakov, A., Oliver, W. and Pharr, G., "Influences of stress on the measurement of mechanical properties using nanoindentation: Part ii. Finite element simulations", Journal of Materials Research,  Vol. 11, No. 03, (1996), 760-768.

14.   Moy, C., Bocciarelli, M., Ringer, S. and Ranzi, G., "Indentation and imprint mapping for the identification of material properties in multi-layered systems", Computational Materials Science,  Vol. 50, No. 5, (2011), 1681-1691.

15.   Stauss, S., Schwaller, P., Bucaille, J.-L., Rabe, R., Rohr, L., Michler, J. and Blank, E., "Determining the stress–strain behaviour of small devices by nanoindentation in combination with inverse methods", Microelectronic Engineering,  Vol. 67, No., (2003), 818-825.

16.   Zhang, J., Niebur, G.L. and Ovaert, T.C., "Mechanical property determination of bone through nano-and micro-indentation testing and finite element simulation", Journal of Biomechanics,  Vol. 41, No. 2, (2008), 267-275.

17.   Lichinchi, M., Lenardi, C., Haupt, J. and Vitali, R., "Simulation of berkovich nanoindentation experiments on thin films using finite element method", Thin Solid Films,  Vol. 333, No. 1, (1999), 278-286.

18.   Karimzadeh, A., Ayatollahi, M. and Alizadeh, M., "Finite element simulation of nano-indentation experiment on aluminum 1100", Computational Materials Science,  Vol. 81, (2014), 595-600.

19.   Testing, A.S.f. and Materials, "Astm designation e 8-00 standard test methods for tension testing of metallic materials, ASTM. (2000).

20.   Wagih, A., "Effect of milling time on morphology and microstructure of al-mg/al2o3 nanocomposite powder produced by mechanical alloying".

21.   Fischer-Cripps, A.C., Contact mechanics, in Nanoindentation. Springer (2011),. 1-19.

22.   Wagih, A., "Synthesis of nanocrystalline al2o3 reinforced al nanocomposites by high-energy mechanical alloying: Microstructural evolution and mechanical properties", Transactions of the Indian Institute of Metals,  (2015), 1-7.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir