IJE TRANSACTIONS A: Basics Vol. 29, No. 1 (January 2016) 60-67    Article in Press

downloaded Downloaded: 208   viewed Viewed: 2912

Y. Omidi, B. Kamareei, H. Nourmoradi, H. Basiri and S. Heidari
( Received: December 18, 2015 – Accepted: January 20, 2016 )

Abstract    In this study, montmorillonite (MMT) modified by a cationic surfactant (Hexadecyltrimethyl ammonium bromide, HDTMA) was used as adsorbent to the removal of methyl red (MR) from aqueous solution. The effect of different parameters includes surfactant loading rate, contact time, pH, adsorbent dosage, and initial MR content was investigated on the sorption. The sorption capacity was increased by increasing the surfactants loading rate up to 120% cation exchange capacity (CEC) of the clay. The contact time 30 min and pH of 6 were selected as the optimum for the uptake of MR. The maximum uptake capacity was obtained 1428.5 mg/g. The experimental data of the sorption was well fitted by pseudo-second-order kinetic and Freundlich isotherm models. The results show that the HDTMA-modified MMT can be applied as an effective and low cost sorbent for the removal of MR dye from aqueous solution.


Keywords    Adsorption, Montmorillonite, Surfactant, Methyl Red


چکیده    در این مطالعه، مونت مورینولیت (MMT) اصلاح شده با یک سورفکتانت کاتیونی (هگزا دسیل تری متیل آمونیوم بروماید، HDTMA) برای حذف متیل رد از محلول آبی استفاده گردید. اثر پارامترهای مختلف مانند میزان بارگذاری سورفکتانت، زمان تماس، پی اچ، دوز جاذب وغلظت اولیه متیل رد روی ظرفیت جذب، بررسی گردید. ظرفیت جذب جاذب با افزایش میزان بارگذاری سورفکتانت تا 120% ظرفیت تبادل یونی مونت مورینولیت، افزایش داشته است. ظرفیت جذب بهینه جاذب (28/84 میلی گرم بر گرم) در زمان 30 دقیقه و پی اچ برابر 6 بدست آمد. داده های آزمایشگاهی به خوبی با مدل های کینتیک درجه دوم کاذب و ایزوترم فروندلیچ متناسب بودند. نتایج نشان داد که HDTMA-MMT میتواند به عنوان یک جاذب موثر و ارزان برای حذف متیل رد از محلول آبی بکار برده شود.



1.     Omidi-Khaniabadi, Y., Jafari, A., Nourmoradi, H., Taheri, F. and Saeedi, S., "Adsorption of 4-chlorophenol from aqueous solution using activated carbon synthesized from aloe vera green wastes", Journal of Advances in Environmental Health Research,  Vol. 3, No. 2, (2015), 120-129.

2.     Basiri, H., Nourmoradi, H., Moghadam, F.M., Moghadam, K.F., Mohammadian, J. and Khaniabadi, Y.O., "Removal of aniline as a health-toxic substance from polluted water by aloe vera waste-based activated carbon".

3.     Masomi, M., Ghoreyshi, A., Najafpour, G. and Mohamed, A., "Adsorption of phenolic compounds onto the activated carbon synthesized from pulp and paper mill sludge: Equilibrium isotherm, kinetics, thermodynamics and mechanism studies", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 10, (2014), 1485-1494.

4.     Elmoubarki, R., Mahjoubi, F., Tounsadi, H., Moustadraf, J., Abdennouri, M., Zouhri, A., El Albani, A. and Barka, N., "Adsorption of textile dyes on raw and decanted moroccan clays: Kinetics, equilibrium and thermodynamics", Water Resources and Industry,  Vol. 9, (2015), 16-29.

5.     Ajemba, R., "Adsorption of malachite green from aqueous solution using activated ntezi clay: Optimization, isotherm and kinetic studies", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 6, (2013), 839-854.

6.     Cheng, Z., Zhang, L., Guo, X., Jiang, X. and Li, T., "Adsorption behavior of direct red 80 and congo red onto activated carbon/surfactant: Process optimization, kinetics and equilibrium", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,  Vol. 137, (2015), 1126-1143.

7.     Jourvand, M., Khorramabadi, G.S., Omidi-Khaniabadi, Y., Godini, H. and Nourmoradi, H., "Removal of methylene blue from aqueous solutions using modified clay".

8.     Demarchi, C.A., Campos, M. and Rodrigues, C.A., "Adsorption of textile dye reactive red 120 by the chitosan–fe (iii)-crosslinked: Batch and fixed-bed studies", Journal of Environmental Chemical Engineering,  Vol. 1, No. 4, (2013), 1350-1358.

9.     Almeida, C., Debacher, N., Downs, A., Cottet, L. and Mello, C., "Removal of methylene blue from colored effluents by adsorption on montmorillonite clay", Journal of colloïd and interface science,  Vol. 332, No. 1, (2009), 46-53.

10.   Rehman, R., Mahmud, T. and Irum, M., "Brilliant green dye elimination from water using psidium guajava leaves and solanum tuberosum peels as adsorbents in environmentally benign way", Journal of Chemistry,  Vol. 2015, (2015).

11.   Nourmoradi, H., Ghiasvand, A. and Noorimotlagh, Z., "Removal of methylene blue and acid orange 7 from aqueous solutions by activated carbon coated with zinc oxide (zno) nanoparticles: Equilibrium, kinetic, and thermodynamic study", Desalination and Water Treatment. ahead-of-print, (2014), 1-11.

12.   Ahmad, M.A., Ahmad, N. and Bello, O.S., "Modified durian seed as adsorbent for the removal of methyl red dye from aqueous solutions", Applied Water Science, (2014), 1-17.

13.   Jadhav, S., Kalme, S. and Govindwar, S., "Biodegradation of methyl red by galactomyces geotrichum mtcc 1360", International Biodeterioration & Biodegradation,  Vol. 62, No. 2, (2008), 135-142.

14.   Haris, M. and Sathasivam, K., "The removal of methyl red from aqueous solutions using modified banana trunk fibers", Archives of Applied Science Research,  Vol. 2, No. 5, (2010), 209-216.

15.   Dawood, S. and Sen, T.K., "Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents", Journal of Chemical and Process Engineering,  Vol. 1, No. 1, (2013), 1-11.

16.   Chen, D., Chen, J., Luan, X., Ji, H. and Xia, Z., "Characterization of anion–cationic surfactants modified montmorillonite and its application for the removal of methyl orange", Chemical Engineering Journal,  Vol. 171, No. 3, (2011), 1150-1158.

17.   Liu, Q., Yang, B., Zhang, L. and Huang, R., "Adsorption of an anionic azo dye by cross-linked chitosan/bentonite composite", International journal of biological macromolecules,  Vol. 72, (2015), 1129-1135.

18.   Gupta, V., Agarwal, A. and Singh, M., "Belpatra (aegel marmelos) bark powder as an adsorbent for the color removal of textile dye “torque blue”", International Journal of Scientific Engineering and Technology,  Vol. 4, No. 2, (2015), 56-60.

19.   Santhi, T., Manonmani, S. and Smitha, T., "Removal of methyl red from aqueous solution by activated carbon prepared from the annona squmosa seed by adsorption", Chemical engineering research bulletin,  Vol. 14, No. 1, (2010), 11-18.

20.   Tarawou, T., Horsfall, M. and Vicente, J.L., "Adsorption of methyl red by waterhyacinth (eichornia crassipes) biomass", Chemistry & biodiversity,  Vol. 4, No. 9, (2007), 2236-2245.

21.   Dey, D., "Adsorption of methyl red on local kaolin from spiked aqueous solution", Adsorption,  Vol. 2, No. 9, (2014).

22.   Awala, H. and El Jamal, M., "Equilibrium and kinetics study of adsorption of some dyes onto feldspar", Journal of the University of Chemical Technology and Metallurgy,  Vol. 46, No. 1, (2011), 45-52.

23.   DIM, P.E., "Adsorption of methyl red and methyl orange using different tree bark powder", Adsorption,  Vol. 4, No. 1, (2013).

24.   Nourmoradi, H., Nikaeen, M. and Khiadani, M., "Removal of benzene, toluene, ethylbenzene and xylene (btex) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study", Chemical Engineering Journal,  Vol. 191, (2012), 341-348.

25.   Nourmoradi, H., Avazpour, M., Ghasemian, N., Heidari, M., Moradnejadi, K., Khodarahmi, F., Javaheri, M. and Moghadam, F.M., "Surfactant modified montmorillonite as a low cost adsorbent for 4-chlorophenol: Equilibrium, kinetic and thermodynamic study", Journal of the Taiwan Institute of Chemical Engineers,  (2015).

26.   Zhu, R., Chen, Q., Liu, H., Ge, F., Zhu, L., Zhu, J. and He, H., "Montmorillonite as a multifunctional adsorbent can simultaneously remove crystal violet, cetyltrimethylammonium, and 2-naphthol from water", Applied Clay Science,  Vol. 88, (2014), 33-38.

27.   Anbia, M. and Davijani, A., "Synthesis of ethylenediamine-modified ordered mesoporous carbon as a new nanoporous adsorbent for removal of cu (ii) and pb (ii) ions from aqueous media", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 9, (2014), 1415-1422.

28.   Silva, M.M., Oliveira, M.M., Avelino, M.C., Fonseca, M.G., Almeida, R.K. and Silva Filho, E.C., "Adsorption of an industrial anionic dye by modified-ksf-montmorillonite: Evaluation of the kinetic, thermodynamic and equilibrium data", Chemical Engineering Journal,  Vol. 203, (2012), 259-268.

29.   Nourmoradi, H., Zabihollahi, S. and Pourzamani, H., "Removal of a common textile dye, navy blue (nb), from aqueous solutions by combined process of coagulation–flocculation followed by adsorption", Desalination and Water Treatment. ahead-of-print, (2015), 1-12.

30.   Faghihian, H., Nourmoradi, H. and Shokouhi, M., "Removal of copper (ii) and nickel (ii) from aqueous media using silica aerogel modified with amino propyl triethoxysilane as an adsorbent: Equilibrium, kinetic, and isotherms study", Desalination and Water Treatment,  Vol. 52, No. 1-3, (2014), 305-313.

31.   Abdullah, A.L., Salleh, M.M., Mazlina, M.S., Noor, M.M.M., Osman, M., Wagiran, R. and Sobri, S., "Azo dye removal by adsorption using waste biomass: Sugarcane bagasse", International Journal of Engineering and Technology,  Vol. 2, No. 1, (2005), 8-13.

32.   Liu, S., Ding, Y., Li, P., Diao, K., Tan, X., Lei, F., Zhan, Y., Li, Q., Huang, B. and Huang, Z., "Adsorption of the anionic dye congo red from aqueous solution onto natural zeolites modified with n, n-dimethyl dehydroabietylamine oxide", Chemical Engineering Journal,  Vol. 248, (2014), 135-144.

33.   Debnath, S., Ballav, N., Maity, A. and Pillay, K., "Development of a polyaniline-lignocellulose composite for optimal adsorption of congo red", International Journal of Biological Macromolecules,  Vol. 75, (2015), 199-209.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir