IJE TRANSACTIONS A: Basics Vol. 29, No. 1 (January 2016) 103-108    Article in Press

downloaded Downloaded: 179   viewed Viewed: 2401

V. Modanloo, R. Hasanzadeh and P. Esmaili
( Received: January 19, 2016 – Accepted: January 28, 2016 )

Abstract    Deep drawing process is one of the most applicable methods in producing industrial parts. In this process, the initial blank deforms to final product using a rigid punch and die. In this investigation, the effect of deep drawing process parameters of brass/steel laminated sheet composites on required forming force has been investigated. The process simulated using finite element method (FEM) and then validated by using experimental results. Afterward, the effect of process parameters including friction coefficient between punch and sheet (punch friction), friction coefficient between die and sheet (die friction), blank holder force and the initial blank diameter all in three different levels investigated using design of experiments (DOE) by Taguchi method. Based on four selected parameters in three levels, experiments performed by Taguchi L9 orthogonal array and then the maximum punch force of each experiment was obtained using validated FE model. Signal to noise (S/N) analysis demonstrated that the die friction is the most important parameter in deep drawing of brass/steel laminated sheet that by its reduction, the maximum punch force decreases. Also analysis of variance (ANOVA) results illustrated that the die friction and initial blank diameter are involved 53.1% and 43.4% of contribution on maximum punch force, respectively.


Keywords    Deep drawing, Laminated sheet composite, Finite element method, Taguchi method


چکیده    یکی از روش­های پرکاربرد در تولید قطعات صنعتی، فرآیند کشش عمیق می­باشد. در این فرآیند، ورق اولیه با استفاده از سنبه و ماتریس سخت به شکل محصول نهایی تغییر شکل می­یابد. در پژوهش حاضر، تاثیر پارامترهای فرآیند کشش عمیق ورق کامپوزیتی دو لایه برنج-فولاد بر روی نیروی مورد نیاز شکل­دهی بررسی و بهینه­سازی شده است. فرآیند با استفاده از مدل اجزای محدود، شبیه­سازی و سپس صحت­سنجی مدل در مقایسه با نتایج تجربی تایید شده است. سپس تاثیر چهار پارامتر ضریب اصطکاک بین سنبه و ورق (اصطکاک سنبه)، ضریب اصطکاک بین ماتریس و ورق (اصطکاک ماتریس)، نیروی ورق­گیر و شعاع ورق اولیه، هرکدام در سه سطح مختلف توسط طراحی آزمایش به روش تاگوچی مورد مطالعه قرار گرفته است. آزمایش­ها بر اساس آرایه متعامد L9 تاگوچی انجام و سپس بیشینه نیروی سنبه هر آزمایش به کمک مدل اجزای محدود صحت­سنجی شده، استخراج گردید. با استفاده از تحلیل سیگنال به نویز مشخص گردید اصطکاک ماتریس، موثرترین پارامتر در فرآیند کشش عمیق ورق کامپوزیتی دو لایه برنج-فولاد می­باشد که با کاهش آن، بیشینه نیروی سنبه نیز کاهش می­یابد. همچنین نتایج آنالیز واریانس نشان داد که اصطکاک ماتریس و شعاع ورق اولیه به ترتیب به میزان 1/53% و 4/43% در بیشینه نیروی سنبه مشارکت دارند.



1.     Houshiar Sadeghian, M., "A novel, simple and cost effective al a356/al2o3 nano-composite manufacturing route with uniform distribution of nanoparticles", International Journal of Engineering Transactions C: Aspects, Vol. 28, No. 9, (2015) 1320-1327

2.     Naceri, A., "Moisture diffusion properties of fabric composite (glass fiber/epoxy resin)", International Journal of Engineering-Transactions B: Applications,  Vol. 22, No. 2, (2008), 205-210.

3.     Kadkhodayan, M., "An investigation into the deep drawing of fiber-metal laminates based on glass fiber reinforced polypropylene", International Journal of Engineering Transactions C: Aspects,,  Vol. 27, No. 3, (2014) 349-358.

4.     Li, C., Chi, C., Lin, P., Zhang, H. and Liang, W., "Deformation behavior and interface microstructure evolution of al/mg/al multilayer composite sheets during deep drawing", Materials & Design,  Vol. 77, No., (2015), 15-24.

5.     Weissman, S.A., "Application of design of experiments to process development", Organic Process Research & Development,  Vol. 19, No. 11, (2015), 1604-1604.

6.     Afrasiabi, H., Khayati, G. and Ehteshamzadeh, M., "Studying of heat treatment influence on corrosion behavior of aa6061-t6 by taguchi method", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 9, (2014), 1423.

7.     Gay, D., "Composite materials: Design and applications, CRC press,  (2014) 236-270.

8.     Gordon, S., "Design of experiments, in: Modeling and simulation in the systems engineering life cycle", Springer, Eds,  (2015), 187-200.

9.     Cavazzuti, M., "Design of experiments,  in: Optimization methods", Springer, Eds,  (2013), 13-42.

10.   Dwivedi, R. and Agnihotri, G., "Numerical simulation of aluminum and brass material cups in deep drawing process", Materials Today: Proceedings,  Vol. 2, No. 4, (2015), 1942-1950.

11.   Pourmoghadam, M.N., Esfahani, R.S., Morovvati, M. and Rizi, B.N., "Bifurcation analysis of plastic wrinkling formation for anisotropic laminated sheets (AA2024–polyamide–AA2024)", Computational Materials Science,  Vol. 77, (2013), 35-43.

12.   Afshin, E. and Kadkhodayan, M., "An experimental investigation into the warm deep-drawing process on laminated sheets under various grain sizes", Materials & Design,  Vol. 87, (2015), 25-35.

13.   Rajabi, A., Kadkhodayan, M., Manoochehri, M. and Farjadfar, R., "Deep-drawing of thermoplastic metal-composite structures: Experimental investigations, statistical analyses and finite element modeling", Journal of Materials Processing Technology,  Vol. 215, (2015), 159-170.

14.   Atrian, A. and Fereshteh-Saniee, F., "Deep drawing process of steel/brass laminated sheets", Composites Part B: Engineering,  Vol. 47, (2013), 75-81.

15.   Montgomery, D.C., "Design and analysis of experiments, Wiley New York,  Vol. 7,  (1984) 101-135.

16.   Shishavan, S.M., Azdast, T. and Ahmadi, S.R., "Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded acrylonitrile butadiene styrene–organoclay nanocomposites", Materials & Design,  Vol. 58,  (2014), 527-534.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir