Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 29, No. 1 (January 2016) 1-7    Article in Press

downloaded Downloaded: 593   viewed Viewed: 3340

  EFFECT OF PARTICLE SIZE OF NAX ZEOLITE ON ADSORPTION OF CO2/CH4
 
A. Eskandari, M. Jahangiri and M. Anbia
 
( Received: August 15, 2014 – Accepted: May 02, 2015 )
 
 

Abstract    In the present work, the nano-NaX zeolite and micro-NaX zeolite were synthesized via hydrothermal method. Then, the adsorption capacities and isotherms of pure gases CO2 and CH4 on the synthesized zeolite nanoparticles were determined at three temperatures of 288, 298 and 308 K and various pressures from 1 up to 20 bar. Adsorption capacities of CO2 on the nano-sized zeolites NaX were showed to be higher than CH4. The selectivity of CO2/CH4 of the nano-sized zeolites NaX was 5.47 at 288 K and pressure about 20 bar. The results of the experimental data follows the Langmuir-Frendlich adsorption isotherm. Reduction of the particle size from micrometer to nanometer results in increasing the adsorption capacity for carbon dioxide on the X zeolite nanoparticles about 28% (from 5.067 to 6.536 mmol/g) at 288 K and 20 bar.

 

Keywords    Adsorption, Carbon dioxide capture, Nanoparticle, nano-sized zeolite NaX

 

چکیده    در کار حاضر، نانو و میکرو زئولیت NaX با استفاده از روش هیدروترمال سنتز شدند. سپس ظرفیت های جذب و ایزوترم های گازهای دی اکسیدکربن و متان در زئولیت نانو ذره سنتز شده در سه دمای 288، 298 و 308 درجه کلوین و فشارهای مختلف1 تا 20 بار تعیین می شوند. نانوزئولیت NaX ظرفیت جذب دی اکسیدکربن بالاتری نسبت به متان نشان داد. انتخاب پذیریCO2/CH4 در نانوزئولیت NaX در دمای 288 درجه کلوین و فشار 20 بار، 5.47 بود. داده های آزمایشگاهی از ایزوترم لانگمویر-فرندلیچ پیروی می کنند. نتایج نشان داد که تبدیل اندازه ذره از میکرو متر به نانو متر، باعث می شود جذب دی اکسیدکربن حدود 28 درصد در دمای 288 درجه کلوین و فشار 20 بار افزایش یابد ( از 5.067 به 6.536 میلی مول بر گرم).

References   

 

1.     Li, Y., Yi, H., Tang, X., Li, F., and Yuan, Q., “Adsorption separation of CO2/CH4 gas mixture on the commercial zeolites at atmospheric pressure”. Chemical Engineering Journal, Vol. 229, (2013), 50-56.

2.     Yu, L., Gong, J., Zeng, C., and Zhang, L., “Synthesis of Binderless Zeolite X Microspheres and Their CO2 Adsorption Properties”. Separation and Purification Technology, Vol. 118, (2013), 188-195.

3.     Jiang, Q., Rentschler, J., Sethia, G., Weinman, S., Perrone, R., and Liu, K., “Synthesis of T-type zeolite nanoparticles for the separation of CO2/N2 and CO2/CH4 by adsorption process”. Chemical Engineering Journal, Vol. 230, (2013), 380-388.

4.     DoroudianRada, M., Fatemi, S., and Mirfendereskic, S.M., “Development of T type zeolite for separation of CO2 from CH4 in adsorption processes”. Chemical Engineering Research and Design, Vol. 90, (2010), 1687-1695.

5.     Zhang, Z., Zhang, W., Chen, X., Xia, Q., and Li, Z., “Adsorption of CO2 on zeolite 13X and activated carbon with higher surface area”. Separation Science and Technology, Vol. 45, (2010), 710-719.

6.     Chen, C., Park, D.W., and Ahn, W.S., “CO2 capture using zeolite 13X prepared from bentonite”. Applied Surface Science, Vol. 292, (2013), 63-67.

7.     Anbia, M. and Hoseini, V., “Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide”. Chemical Engineering Journal, Vol. 191, (2012), 326-330.

8.     Cejka, J., Bekkum, H.V., Corma, A., and Schuth, F., “Introduction to Zeolite Science and Practice”. ed. 3rd. Hungary: Elsevier Science, (2007).

9.     Siriwardane, R.V., Shen, M.S., Fisher, E.P., and Poston, J.A., “Adsorption of CO2 on Molecular Sieves and Activated Carbon”. Energy & Fuels, Vol. 15, (2001), 279-284.

10.   Chue, K.T., Kim, J.N., Yoo, Y.J., Cho, S.H., and Yang, R.T., “Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption”. Industrial Engineering Chemical Research, Vol. 34, (1995), 591-598.

11.   Yong, Z., Mata, V., and Rodrigues, A.E., “Adsorption of carbon dioxide onto hydrotalcite-like compounds (HTlcs) at high temperatures”. Industrial Engineering Chemical Research, Vol. 40, (2001), 204-209.

12.   Xu, R., Pang, W., Yu, J., Huo, Q., and Chen, J., “Chemistry of zeolites and Related porous materials:Synthesis and Structure”. Asia: Johon Wiley, (2007).

13.   Zhang, X., Tang, D., Zhang, M., and Yang, R., “Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals”. Powder Technology, Vol. 235, (2013), 322-328.

14.   Zhang, X., Tong, D., Zhao, J., and Li, X., “Synthesis of NaX zeolite at room temperature and its characterization”. Vol. 104, (2013), 80-83.

15.   Mintova, S., Valtchev, V., Kiricsi, I., P´al-Borb´ely, G., Nagy, J.B., and Karge, H.G., “Synthesis of Nanosized FAU-Type Zeolite Studies in Surface Science and Catalysis”. Cambridge,Mass, USA: Elsevier, (1999).

16.   Zhan, B.Z., White, M.A., Lumsden, M., Mueller-Neuhaus, J., Robertson, K.N., Cameron, T.S., and Gharghouri, M., “Control of Particle Size and Surface Properties of Crystals of NaX Zeolite”. Chemichal Material,, Vol. 14, (2002), 3636-3642.

17.   Zhan, B.Z., White, M.A., Robertson, K.N., Cameron, T.S., and Gharghouri, M., “A novel, organic-additive-free synthesis of nanometer-sized NaX crystals”. Chemichal Communication, Vol. 13, (2001), 1176-1177.

18.   Ma, Y., Yan, C., Alshameri, A., Qiu, X., Zhou, C., and li, D., “Synthesis and characterization of 13X zeolite from low-grade natural kaolin”. Advanced Powder Technology, Vol. 25, (2013), 495-499.

19.   Ansari, M., Aroujalian, A., Raisi, A., Dabir, B., and Fathizadeh, M., “Preparation and characterization of nano-NaX zeolite by microwave assisted hydrothermal method”. Advanced Powder Technology, Vol. 25, (2013), 722-727.

20.   Ngoc, D.T., Pham, T.H., and Nguyen, K.D.H., “Synthesis, characterization and application of nanozeolite NaX from Vietnamese kaolin”. Advances in Natural Sciences: Nano Sciences Nanotechnology, Vol. 4, (2013), 146-157.

21.   Tosheva, L. and Valtchev, V.P., “Nanozeolites: Synthesis, Crystallization Mechanism, and Applications”. Chemichal Material, Vol. 17, (2005), 2494-2513.

22.   Wang, H., Holmberg, B.A., and Yan, Y., “Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels”. Journal of the American Chemical Society, Vol. 125, (2003), 9928-9929.

23.   Karimi, R., Bayati, B., Aghdam, N.C., Ejtemaee, M., and Babaluo, A.A., “Studies of the effect of synthesis parameters on ZSM-5 nanocrystalline material during template-hydrothermal synthesis in the presence of chelating agent”. PowderTechnology, Vol. 229, (2012), 229-236.

24.   Aly, H.M., Moustafa, M.E., and Abdelrahman, E.A., “Synthesis of mordenite zeolite in absence of organic template”. Advance Powder Technoloy, Vol. 23, (2012), 757-760.

25.   Liang, Z., Marshall, M., and Chaffee, A.L., “Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation”. Energy Procedia, Vol. 1, (2009), 1265-1271.

26.   Cheung, O., Bacsik, Z., Liu, Q., Mace, A., and Hedin, N., “Adsorption kinetics for CO2 on highly selective zeolites NaKA and nano-NaKA”. Applied Energy, Vol. 112, (2013), 1326-1336.

27.   Fathizadeh, M., Aroujalian, A., and Raisi, A., “Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process”. Journal of Membrane Science, Vol. 375, (2011), 88-95.

28.   Fathizadeh, M. and Aroujalian, A., “Synthesis and Characterization of Nano Particle Crystals of NaX Zeolite”. International Journal of I Industrial Chemical, Vol. 2, (2011), 140-143.

29.   Anbia, M., Hoseini, V., and Mandegarzad, S., “Synthesis and characterization of nanocomposite MCM-48-PEHA-DEA and its application as CO2 adsorbent”. Korean Journal of Chemical Engineering, Vol. 29, (2012), 1776.

30.   Anbia, M. and Mandegarzad, S., “Enhanced hydrogen sorption on modified MIL-101 with Pt/CMK-3 by hydrogen spillover effect”. Journal of Alloys and Compounds, Vol. 532, (2012), 61-67.

31. salehi, S. and Anbia, M. “Investigation of Carbon Dioxide Adsorption on Amino-Functionalized Mesoporous Silica". International Journal of Engineering, vol. 28, (2015), 848-854.

32.   Silva, J.A.C., A.F.Cunha, K.Schumann, and Rodrigues, A.E., “Binary adsorption of CO2/CH4 in binderless beads of 13X zeolite”. Microporous and Mesoporous Materials, Vol. 187, (2014), 100-107.

33.   Kulprathipanja, S., “Zeolite In Industrial Seperation and Catalysis,”. USA: Wiley, (2010).





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir