Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 29, No. 1 (January 2016) 53-59    Article in Press

downloaded Downloaded: 159   viewed Viewed: 2132

  HIGH-PERFORMANCE ROBUST THREE-AXIS FINITE-TIME ATTITUDE CONTROL APPROACH INCORPORATING QUATERNION BASED ESTIMATION SCHEME TO OVERACTUATED SPACECRAFT
 
A. H. Mazinan
 
( Received: July 15, 2015 – Accepted: January 28, 2016 )
 
 

Abstract    With a focus on investigations in the area of overactuated spacecraft, a new high-performance robust three-axis finite-time attitude control approach, which is organized in connection with the quaternion based estimation scheme is proposed in the present research with respect to state-of-the-art. The approach proposed here is realized based upon double closed loops to deal with the angular rates of the system, in the inner loop, and also the rotational angles of the system in line with the corresponding quaternion, in the outer loop, synchronously. With this goal, a combination of the linear and its non-linear terms through the sliding mode control approach and also the proportional derivative based linear quadratic regulator control approach is organized. There is the white measurement noise to be realized the outcomes in such real situations, where it is coped with through the optimal estimation scheme to be designed, correspondingly. The investigated results are organized with regard to the pulse modulation synthesis through the technique of the pulse width pulse frequency to manage a set of on-off reaction thrusters, as long as the control allocation is employed to handle the aforementioned overactuated system under control. The effectiveness of the approach investigated is finally considered in line with a series of the experiments to be tangibly verified.

 

Keywords    Robust Finite-Time Attitude Control Approach Overactuated Spacecraft Quaternion Based Estimation Scheme Measurement Noise

 

چکیده    با تمرکز بر پژوهش در حوزه فضاپیماهای فوق تحریک، یک روش کنترل وضعیت مقاوم سه محوره جدید با کارآیی بالا بر اساس تخمین مبتنی بر کواترنیون در این تحقیق پیشنهاد شده است. این روش کنترلی بر پایه طراحی دو حلقه برای کنترل همزمان سرعت زاویه­ای و چرخش زاویه­ای در راستای کواترنیون صورت پذیرفته است. با این هدف، یک ترکیب خطی و غیرخطی با به کارگیری کنترل مد لغزشی و همچنین کنترل تناسبی مشتقی مبتنی بر رگولاتور درجه دوم خطی طراحی شده است. در این پژوهش، نویز سفید اندازه­گیری مورد بررسی قرار گرفته است و متناظرا از یک روش تخمین مبتنی بر کواترنیون استفاده شده است. نتایج حاصل بر پایه آنالیز مدلاسیون پالس از طریق تکنیک پهنای پالس و فرکانس پالس با هدف راه اندازی یک مجموعه رانشگرهای عکس العملی دو وضعیته بیان شده است، در شرایطی که ایده تخصیص کنترل جهت راه اندازی سامانه فوق تحریک مطرح شده است. برتری نتایج روش پیشنهادی در راستای یک مجموعه آزمایشات ارزیابی و مورد تایید قرار گرفته است.

References   

 

1.     Hu, Q., Li, B. and Zhang, Y., "Robust attitude control design for spacecraft under assigned velocity and control constraints", ISA transactions,  Vol. 52, No. 4, (2013), 480-493.

2.     Cai, H. and Huang, J., "The leader-following attitude control of multiple rigid spacecraft systems", Automatica,  Vol. 50, No. 4, (2014), 1109-1115.

3.     Kuo, Y.-L. and Wu, T.-L., "Open-loop and closed-loop attitude dynamics and controls of miniature spacecraft using pseudowheels", Computers & Mathematics with Applications,  Vol. 64, No. 5, (2012), 1282-1290.

4.     Zhang, X., Liu, X. and Zhu, Q., "Attitude control of rigid spacecraft with disturbance generated by time varying exosystems", Communications in Nonlinear Science and Numerical Simulation,  Vol. 19, No. 7, (2014), 2423-2434.

5.     M. Navabi and N. N. Kamran, “Earth’s magnetic field for spacecraft attitude control application”, International Journal of Engineering- Transactions B, Vol. 28, No. 5, (2015), 648-653.

6.     Soleymani, A. and Toloei, A., "High accuracy relative motion of spacecraft using linearized time-varying j2-perturbed terms", International Journal of Engineering-Transactions A: Basics,  Vol. 26, No. 4, (2012), 323-332.

7.     Erdong, J., Xiaolei, J. and Zhaowei, S., "Robust decentralized attitude coordination control of spacecraft formation", Systems & Control Letters,  Vol. 57, No. 7, (2008), 567-577.

8.     Bustan, D., Pariz, N. and Sani, S.K.H., "Robust fault-tolerant tracking control design for spacecraft under control input saturation", ISA transactions,  Vol. 53, No. 4, (2014), 1073-1080.

9.     Lu, K., Xia, Y. and Fu, M., "Controller design for rigid spacecraft attitude tracking with actuator saturation", Information Sciences,  Vol. 220, No., (2013), 343-366.

10.   Soleymani, A. and Toloei, A., "Effects analysis of frozen conditions for spacecraft relative motion dynamics", International Journal of Engineering-Transactions A: Basics,  Vol. 25, No. 4, (2012), 301-308.

11.   Mazinan, A., Pasand, M. and Soltani, B., "Full quaternion based finite-time cascade attitude control approach via pulse modulation synthesis for a spacecraft", ISA transactions,  Vol. 58, No., (2015), 567-585.

12.   Mazinan, A. and Khalaji, A., "Tadc: A new three-axis detumbling mode control approach", International Journal of Dynamics and Control,  Vol., No., (2015), 1-10.

13.   Mazinan, A., "A lyapunov-based three-axis attitude intelligent control approach for unmanned aerial vehicle", Journal of Central South University,  Vol. 22, No. 12, (2015), 4669-4678.

14.   Mazinan, A., "On spacecraft maneuvers control subject to propellant engine modes", ISA transactions,  Vol. 58, No., (2015), 222-236.

15.   Mazinan, A., "High-precision full quaternion based finite-time cascade attitude control strategy considering a class of overactuated space systems", Human-centric Computing and Information Sciences,  Vol. 5, No. 1, (2015), 1-14.

16.   Mazinan, A., "High-precision three-axis detumbling and pointing attitude control strategy for a class of complicated space systems", International Journal of Dynamics and Control,  Vol., No., (2015), 1-22.

17.   Mazinan, A., "On comprehensive cascade control strategy considering a class of overactuated autonomous non-rigid space systems with model uncertainties", Robotics and Autonomous Systems, (2015).

18.   Pukdeboon, C. and Zinober, A., "Control lyapunov function optimal sliding mode controllers for attitude tracking of spacecraft", Journal of the Franklin Institute,  Vol. 349, No. 2, (2012), 456-475.

19.   Yeh, F.-K., "Sliding-mode adaptive attitude controller design for spacecrafts with thrusters", Control Theory & Applications, IET,  Vol. 4, No. 7, (2010), 1254-1264.

20.   Yongqiang, J., Xiangdong, L., Wei, Q. and Chaozhen, H., "Time-varying sliding mode controls in rigid spacecraft attitude tracking", Chinese Journal of Aeronautics,  Vol. 21, No. 4, (2008), 352-360.

21.   Moradi, M., "Self-tuning pid controller to three-axis stabilization of a satellite with unknown parameters", International Journal of Non-Linear Mechanics,  Vol. 49, No., (2013), 50-56.

22.   Wu, J., Liu, K. and Han, D., "Adaptive sliding mode control for six-dof relative motion of spacecraft with input constraint", Acta Astronautica,  Vol. 87, No., (2013), 64-76.

23.   Viegas, D., Batista, P., Oliveira, P. and Silvestre, C., "On the stability of the continuous-time kalman filter subject to exponentially decaying perturbations", Systems & Control Letters,  Vol. 89, No., (2016), 41-46.  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir