Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 29, No. 12 (December 2016) 1747-1756    Article in Press

downloaded Downloaded: 104   viewed Viewed: 1693

  THE BALLISTIC BEHAVIOR OF HIGH STRENGTH, LOW ALLOY-100 STEEL AT SUB-ZERO TEMPERATURES
 
G. Majzoubi and S Moradi
 
( Received: December 29, 2015 – Accepted in Revised Form: September 30, 2016 )
 
 

Abstract    The ballistic response of the high strength, low alloy (HSLA-100) steel at ambient and temperatures of -400°C, -800°C and -1960°C is investigated in this work. Lambert-jonas equation is used to fit the experimental results into a curve. The effect of quenching on ballistic behavior of HSLA-100 is also studied. The experiments are conducted on 3mm thick rectangular specimens impacted by blunt tip projectiles. The results indicate that for the as-received material, the ballistic limit is nearly the same for ambient and -400°C temperatures, but increases significantly by 30% and 40% for -800°C and -1960°C temperatures, respectively. The same trend is observed for the quenched specimens. However, the increase of ballistic limit is lower for the quenched specimens and is 16% and 30% for -800°C and -1960°C temperatures, respectively. The ballistic test was also simulated using Ls-dyna hydrocode to examine the effect of parameters such as the specimen’s thickness, the projectile’s tip shape and mass on the ballistic limit of the materials.

 

Keywords    HSLA-100, Ballistic limit, Sub-zero temperature, Lambert-Jonas, Residual velocity

 

چکیده    در این تحقیق، رفتار بالستیک فولاد پرمقاومت و آلیاژ پائین HSLA-100 در دماهای محیط، 0C40-، 0C80- و 0C196- مورد مطالعه قرار می گیرد. معادله لمبرت-جونز برای برازش منحنی های بالستیک مورد استفاده قرار می گیرد. همچنین، تأثیر عملیات حرارتی کوئنچینگ بر رفتار بالستیک فولاد فوق مورد بررسی قرار خواهد گرفت. آزمایش های بالستیک بر روی نمونه های مستطیلی با ضخامت mm3 وبا استفاده از پرتابه های استوانه ای سرتخت انجام می شوند. نتایج به دست آمده نشان می دهند که حد بالستیک برای ماده دریافتی (بدون عملیات حرارتی) در دماهای محیط و0C40- تقریباً یکسان است اما برای دماهای 0C80- و 0C196- به ترتیب 30% و 40% افزایش می یابد. همین نتیجه برای نمونه های کوئنچ شده مشاهده گردید. با این حال، مقدار افزایش حد بالستیک برای نمونه های کوئنچ شده کمتر از نمونه های دریافتی بود و برای برای دماهای 0C80- و 0C196- به ترتیب 16% و 30% بود. برای بررسی پارامترهای مختلف نظیر ضخامت نمونه، هندسه سر پرتابه و جرم آن بر حد بالستیک فولاد فوق، آزمایش بالستیک با استفاده از نرم افزار Ls-dyna شبیه سازی گردید.

References   

1.      Holsberg, P., Caplan, I. and Gudas, J., "Navy's welding research picks up steam", Advanced Materials and Processes,  Vol. 138, No. 1, (1990), 45-46.

2.      Thompson, S., Colvin, D. and Krauss, G., "Austenite decomposition during continuous cooling of an HSLA-80 plate steel", Metallurgical and Materials Transactions A,  Vol. 27, No. 6, (1996), 1557-1571.

3.      Palmiere, E., Garcia, C. and DeArdo, A., "Processing, microstructure and properties of microalloyed and other modern hsla steels", Iron and Steel Society of AIME, Warrendale, PA,  Vol. 113, (1992).

4.      Sarkar, A., "A development study of microalloyed steel (HSLA) through experimental exploration", National Institute of Technology Rourkela,  (2012),

5.      Mattes, V. R., "Microstructure and mechanical properties of HSLA-100 steel", Monterey, California: Naval Postgraduate School,  (1990),

6.      Das, S.K., Sivaprasad, S., Das, S., Chatterjee, S. and Tarafder, S., "The effect of variation of microstructure on fracture mechanics parameters of HSLA-100 steel", Materials Science and Engineering: A,  Vol. 431, No. 1, (2006), 68-79.

7.      Bhole, S., Nemade, J., Collins, L. and Liu, C., "Effect of nickel and molybdenum additions on weld metal toughness in a submerged arc welded HSLA line-pipe steel", Journal of Materials Processing Technology,  Vol. 173, No. 1, (2006), 92-100.

8.      Xue, Q., Benson, D., Meyers, M., Nesterenko, V. and Olevsky, E., "Constitutive response of welded HSLA 100 steel", Materials Science and Engineering: A,  Vol. 354, No. 1, (2003), 166-179.

9.      Alkhader, M. and Bodelot, L., "Large strain mechanical behavior of HSLA-100 steel over a wide range of strain rates", Journal of Engineering Materials and Technology,  Vol. 134, No. 1, (2012).

10.    Schindler, I., Janosec, M., Mistecky, E., Ruzicka, M., Cizek, L., Dobrzanski, L., Rusz, S. and Suchanek, P., "Effect of cold rolling and annealing on mechanical properties of HSLA steel", Archives of Materials Science and Engineering,  Vol. 36, No. 1, (2009), 41-47.

11.    Ray, P., Ganguly, R. and Panda, A., "Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables", Materials Science and Engineering: A,  Vol. 346, No. 1, (2003), 122-131.

12.    Mujahid, M., Lis, A., Garcia, C. and DeArdo, A., "HSLA-100 steels: Influence of aging heat treatment on microstructure and properties", Journal of Materials Engineering and Performance,  Vol. 7, No. 2, (1998), 247-257.

13.    Dhua, S., Ray, A. and Sarma, D., "Effect of tempering temperatures on the mechanical properties and microstructures of HSLA-100 type copper-bearing steels", Materials Science and Engineering: A,  Vol. 318, No. 1, (2001), 197-210.

14.    Martineau, R. L., Prime, M. B. and Duffey, T., "Penetration of HSLA-100 steel with tungsten carbide spheres at striking velocities between 0.8 and 2.5 km/s", International Journal of Impact Engineering,  Vol. 30, No. 5, (2004), 505-520.

15.    Lambert, J. and Jonas, G., "Towards standardization in terminal ballistics testing: Velocity representation", DTIC Document, (1976).

16.    Recht, R. and Ipson, T., "Ballistic perforation dynamics", Journal of Applied Mechanics,  Vol. 30, No. 3, (1963), 384-390.

17.    Nia, A. A., Razavi, S. and Majzoobi, G., "Ballistic limit determination of aluminum honeycombs—experimental study", Materials Science and Engineering: A,  Vol. 488, No. 1, (2008), 273-280.

18.    Kpenyigba, K., Jankowiak, T., Rusinek, A., Pesci, R. and Wang, B., "Effect of projectile nose shape on ballistic resistance of interstitial-free steel sheets", International Journal of Impact Engineering,  Vol. 79, (2015), 83-94.

19.    Jena, P., Mishra, B., RameshBabu, M., Babu, A., Singh, A., Sivakumar, K. and Bhat, T. B., "Effect of heat treatment on mechanical and ballistic properties of a high strength armour steel", International Journal of Impact Engineering,  Vol. 37, No. 3, (2010), 242-249.

20.    Mishra, B., Jena, P., Ramakrishna, B., Madhu, V., Bhat, T. and Gupta, N., "Effect of tempering temperature, plate thickness and presence of holes on ballistic impact behavior and ASB formation of a high strength steel", International Journal of Impact Engineering,  Vol. 44, (2012), 17-28.

21.    Senthil, P. P., Singh, B. B., Kumar, K. S. and Gogia, A., "Effect of heat treatment on ballistic performance of an armour steel against long rod projectile", International Journal of Impact Engineering,  Vol. 80, (2015), 13-23.

22.    Czyryca, E. J., Link, R. E., Wong, R. J., Aylor, D. A., Montem, T. W. and Gudas, J. P., "Development and certification of HSLA100 steel for naval ship construction", Naval Engineers Journal,  Vol. 102, No. 3, (1990), 63-82.

23.    ASTM A588 / A588M-10, S. S. f. H.-S.L.-A. S. S., "up to 50 ksi [345 MPa] Minimum Yield Point, with Atmospheric Corrosion Resistance", ASTM International, West Conshohocken, PA, (2010), www.astm.org.

24.             Bridgman, P. W., "Studies in large plastic flow and fracture with special emphasis on the effects of hydrostatic pressure", McGraw-Hill, (1952).





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir