IJE TRANSACTIONS C: Aspects Vol. 29, No. 12 (December 2016) 1783-1790    Article in Press

downloaded Downloaded: 99   viewed Viewed: 1531

Y. Dabiry, M. M. Sheikhi and R. Nikoi
( Received: February 29, 2016 – Accepted in Revised Form: November 11, 2016 )

Abstract    In this paper, an experimental investigation on ultrasonic welding of polyamide composites reinforced with glass fiber has been carried out. The effect of ultrasonic welding parameters, such as welding time, air pressure, hold time and the amount of glass fiber in the composite on tensile strength of weld joints were determined using response surface methodology. This methodology was applied for developing a mathematical model which can predict the main effects of the above parameters and their impacts on tensile strength of T-welded ultrasonic joints in 4-mm thick polyamide composite sheets. The analysis of variance was performed to check the adequacy of the developed model. A comparison was also made between the predicted and actual results. The results showed that a maximum failure force of about 4759 N is obtained when vibration amplitude, air pressure welding time, holding time and amount of glass fiber are 35 microns, 3.6 bar, 1.84 seconds, 0.9 seconds and 41 percent, respectively .The joint strength of welded parts increased with the fiber content in the composites.


Keywords    Ultrasonic Welding, Polyamide Composite, Response Surface Methodology, Weld Failure Force


چکیده    در این مقاله، یک تحقیق تجربی در زمینه جوشکاری فرا صوت کامپوزیت پلی آمید تقویت شده با الیاف شیشه انجام شده است. اثر پارامترهای جوشکاری فرا صوت مانند زمان جوشکاری ، فشار جوشکاری ، زمان نگهداری و مقدار الیاف شیشه در کامپوزیت بر مقاومت کششی اتصالات جوش با استفاده از روش سطح پاسخ انجام شد. این روش یک مدل ریاضی است که می تواند اثرات پارامترهای اصلی فوق را براستحکام کششی اتصال T شکل ورق های کامپوزیت پلی آمید به ضخامت 4 میلی متر که به روش جوشکاری اولتراسونیک اتصال داده شده است را پیش بینی نماید. تجزیه وتحلیل واریانس برای بررسی کفایت مدل توسعه یافته و مقایسه بین نتایج پیش بینی شده و واقعی انجام شده است. نتایج نشان می‌دهد بیشترین نیروي گسیختگی حدودKN 4759 را می توان در دامنه ارتعاش ثابت 35 میکرون ، فشار هوای 6/3 بار، زمان جوشکاری84/1ثانیه، زمان نگهداری 9/0 ثانیه و مقدار الیاف شیشه 41% به دست آورد.


1.      Iyer, S.R. and Drzal, L.T., "Manufacture of powder-impregnated thermoplastic composites", Journal of Thermoplastic Composite Materials,  Vol. 3, No. 4, (1990), 325-355.

2.      Offringa, A.R., "Thermoplastic composites—rapid processing applications", Composites Part A: Applied Science and Manufacturing,  Vol. 27, No. 4, (1996), 329-336.

3.      Mazumdar, S., "Composites manufacturing: Materials, product, and process engineering, CrC press,  (2001).

4.      Kohan, M.I., "Nylon plastics handbook, Hanser Munich,  Vol. 378,  (1995).

5.      Troughton, M.J., "Handbook of plastics joining: A practical guide, William Andrew,  (2008).

6.      Rezaei, G. and Arab, N.B.M., "Investigation on tensile strength of friction stir welded joints in pp/epdm/clay nanocomposites", International Journal of Engineering-Transactions C: Aspects,  Vol. 28, No. 9, (2015), 1382-1390.

7.      Yousefpour, A., Hojjati, M. and Immarigeon, J.-P., "Fusion bonding/welding of thermoplastic composites", Journal of Thermoplastic Composite Materials,  Vol. 17, No. 4, (2004), 303-341.

8.      Amanat, N., James, N.L. and McKenzie, D.R., "Welding methods for joining thermoplastic polymers for the hermetic enclosure of medical devices", Medical engineering & physics,  Vol. 32, No. 7, (2010), 690-699.

9.      Rashli, R., Bakar, E.A. and Kamaruddin, S., "Determination of ultrasonic welding optimal parameters for thermoplastic material of manufacturing products", Jurnal Teknologi,  Vol. 64, No. 1, (2013), 19-24.

10.    Prabhakaran, R., Kontopoulou, M., Zak, G., Bates, P. and Baylis, B., "Contour laser–laser-transmission welding of glass reinforced nylon 6", Journal of Thermoplastic Composite Materials,  Vol. 19, No. 4, (2006), 427-439.

11.    Węglowska, A. and Pietras, A., "Influence of the welding parameters on the structure and mechanical properties of vibration welded joints of dissimilar grades of nylons", Archives of Civil and Mechanical Engineering,  Vol. 12, No. 2, (2012), 198-204.

12.    Liu, S.J., Chang, I.T. and Hung, S.W., "Factors affecting the joint strength of ultrasonically welded polypropylene composites", Polymer Composites,  Vol. 22, No. 1, (2001), 132-141.

13.    Orías, A.A.E. and Renaud, J.E., "An optimization study of the ultrasonic welding of thin film polymers", in ASME 2004 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Society of Mechanical Engineers., (2004), 75-84.

14.    Nikoi, R., Sheikhi, M. and Arab, N.B.M., "Experimental analysis of effects of ultrasonic welding on weld strength of polypropylene composite samples", International Journal of Engineering-Transactions C: Aspects,  Vol. 28, No. 3, (2014), 447-453.

15.    Kruger, S., Wagner, G. and  Eifler, D.,  "Ultrasonic  welding  of metal/composite joints", Advanced engineering materials,  Vol.6, No. 3, (2004), 157-159.

16.    Elangovan, S., Prakasan, K. and Jaiganesh, V., "Optimization of ultrasonic welding parameters for copper to copper joints using design of experiments", The International Journal of Advanced Manufacturing Technology,  Vol. 51, No. 1-4, (2010), 163-171.

17.    Gullu, A., Ozdemir, A. and Ozdemir, E., "Experimental investigation of the effect of glass fibres on the mechanical properties of polypropylene (pp) and polyamide 6 (pa6) plastics", Materials & design,  Vol. 27, No. 4, (2006), 316-323.

18.    Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M., "Response surface methodology: Process and product optimization using designed experiments, John Wiley & Sons,  (2016).

19.    Chandrasekaran, K., Marimuthu, P. and Raja, K., "Prediction model for cnc turning on aisi316 with single and multilayered cutting tool using box behnken design (research note)", International Journal of Engineering-Transactions A: Basics,  Vol. 26, No. 4, (2012), 401-410.

20.    Rajabi, A. and Kadkhodayan, M., "An investigation into the deep drawing of fiber-metal laminates based on glass fiber reinforced polypropylene", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 3, (2013), 349-358.

21.    Volkov, S., "Effect of edge preparation on the weldability of plastics in ultrasonic welding", Welding International,  Vol. 28, No. 4, (2014), 329-332.

22.    Kagan, V. and Pinho, G., "Laser transmission welding of semicrystalline thermoplastics-part ii: Analysis of mechanical performance of welded nylon", Journal of Reinforced Plastics and Composites,  Vol. 23, No. 1, (2004), 95-107.

23.    Hosseinpour, M., Najafpour, G., Younesi, H., Khorrami, M. and Vaseghi, Z., "Lipase production in solid state fermentation using aspergillus niger: Response surface methodology", International Journal of Engineering,  Vol. 25, No. 3, (2012), 151-159.

24.    Cowpe, J., Astin, J., Pilkington, R. and Hill, A., "Application of response surface methodology to laser-induced breakdown spectroscopy: Influences of hardware configuration", Spectrochimica Acta Part B: Atomic Spectroscopy,  Vol. 62, No. 12, (2007), 1335-1342.

25.    Acherjee, B., Misra, D., Bose, D. and Venkadeshwaran, K., "Prediction of weld strength and seam width for laser transmission welding of thermoplastic using response surface methodology", Optics & Laser Technology,  Vol. 41, No. 8, (2009), 956-967.

26.    Benyounis, K., Olabi, A. and Hashmi, M., "Effect of laser welding parameters on the heat input and weld-bead profile", Journal of Materials Processing Technology,  Vol. 164, (2005), 978-985.

27.    Norouzi, A., Hamedi, M. and Adineh, V., "Strength modeling and optimizing ultrasonic welded parts of abs-pmma using artificial intelligence methods", The International Journal of Advanced Manufacturing Technology,  Vol. 61, No. 1-4, (2012), 135-147.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir