Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 29, No. 12 (December 2016) 1635-1641    Article in Press

downloaded Downloaded: 208   viewed Viewed: 2292

  ULTRASOUND ASSISTED IN SITU ESTERIFICATION OF RUBBER SEEDS OIL FOR BIODIESEL PRODUCTION (RESEARCH NOTE)
 
H. Hadiyanto, W. Widayat and A. Duma
 
( Received: June 10, 2016 – Accepted in Revised Form: November 11, 2016 )
 
 

Abstract    Since the conventional esterification method requires longer processing time and obtain low yield, the intensification of this process is still interesting subject to be investigated. To reduce the oil extraction cost from seeds which almost 70% of total processing cost, in situ esterification has been recently introduced. The objective of study was to produce biodiesel from rubber seeds oil through in situ esterification and assisted by ultrasound irradiation. The experiment was carried out in two stages of catalyst additions: H2SO4 (varied from 0.1-1% v/v) and NaOH (0.1%) and the esterification had been conducted at 60oC for 30 minutes. The results showed that the optimum yield of fatty acid methyl ester (FAME) was 35% with variable of rubber seed ratio to methanol 1:1.75 (w/v), catalyst H2SO4 1% and catalyst KOH 0.1%.

 

Keywords    Biodiesel, rubber seeds, in situ, (trans)esterification, Fatty Acid Methyl Ester (FAME), Ultrasonic

 

چکیده    از آنجا که روش استریفیکاسیون معمولی نیاز به زمان فرآوری طولانی داشته و بازده پایینی دارد، بهبود این فرایند هنوز هم یک موضوع جالب است که باید بررسی شود. به منظور کاهش هزینه استخراج روغن از دانه که تقریبا 70٪ از هزینه کل فرایند را شامل می‌شود، فرایند استریفیکاسیون درجا اخیرا معرفی شده است. هدف از این مطالعه تولید بیودیزل از روغن دانه لاستیک از طریق استریفیکاسیون در محل، باکمک امواج فراصوت در 42 کیلو هرتز به مدت 30 دقیقه بود. آزمایش در دو مرحله افزودن کاتالیزور انجام شد: اسید سولفوریک ( با غلظت 1/0-1% حجمی/حجمی) و سود (1/0%) و استریفیکاسیون در 60 درجه سانتیگراد به مدت 30 دقیقه تحت فرکانس صوت 42 کیلو هرتز انجام شد. نتایج نشان داد که بازده بهینه اسید چرب متیل استر (FAME) 35% بود که متناظر با بازده بیودیزل 5/92% بوده که تحت شرایط نسبت دانه لاستیک به متانول 1: 75/1 (وزنی/حجمی)، بارگذاری کاتالیزور H2SO4 (1%) و بارگذاری KOH کاتالیزور (1/0%) حاصل شد.

References   

1.      Balat, M., "Potential alternatives to edible oils for biodiesel production–a review of current work", Energy Conversion and Management,  Vol. 52, No. 2, (2011), 1479-1492.

2.      Chhetri, A.B., Tango, M.S., Budge, S.M., Watts, K.C. and Islam, M.R., "Non-edible plant oils as new sources for biodiesel production", International Journal of Molecular Sciences,  Vol. 9, No. 2, (2008), 169-180.

3.      Parhusip, A.B., "Potret karet alam indonesia", Economic Review,  Vol. 213, (2008).

4.      Ramadhas, A.S., Jayaraj, S. and Muraleedharan, C., "Biodiesel production from high FFA rubber seed oil", Fuel,  Vol. 84, No. 4, (2005), 335-340.

5.      Harrington, K.J. and D'Arcy-Evans, C., "Transesterification in situ of sunflower seed oil", Industrial & Engineering Chemistry Product Research and Development,  Vol. 24, No. 2, (1985), 314-318.

6.      Bankovic-Ilic, I.B., Stamenkovic, O.S. and Veljković, V.B., "Biodiesel production from non-edible plant oils", Renewable and Sustainable Energy Reviews,  Vol. 16, No. 6, (2012), 3621-3647.

7.      Lim, S., Hoong, S.S., Teong, L.K. and Bhatia, S., "Supercritical fluid reactive extraction of jatropha curcas l. Seeds with methanol: A novel biodiesel production method", Bioresource Technology,  Vol. 101, No. 18, (2010), 7169-7172.

8.      Shuit, S.H., Lee, K.T., Kamaruddin, A.H. and Yusup, S., "Reactive extraction and in situ esterification of jatropha curcas l. Seeds for the production of biodiesel", Fuel,  Vol. 89, No. 2, (2010), 527-530.

9.      Widayat, W. and Wibowo, A., "Hadiyanto Study on the production process of biodiesel from rubber seed (hevea brasiliensis) by in situ (trans) esterification method with acid catalyst", Energy Procedia,  (2013) Vol. 32, No. 64-73.

10.    Georgogianni, K., Kontominas, M., Pomonis, P., Avlonitis, D. and Gergis, V., "Alkaline conventional and in situ transesterification of cottonseed oil for the production of biodiesel", Energy & Fuels,  Vol. 22, No. 3, (2008), 2110-2115.

11.    Su, E.-Z., Zhang, M.-J., Zhang, J.-G., Gao, J.-F. and Wei, D.-Z., "Lipase-catalyzed irreversible transesterification of vegetable oils for fatty acid methyl esters production with dimethyl carbonate as the acyl acceptor", Biochemical Engineering Journal,  Vol. 36, No. 2, (2007), 167-173.

12.    Siatis, N., Kimbaris, A., Pappas, C., Tarantilis, P. and Polissiou, M., "Improvement of biodiesel production based on the application of ultrasound: Monitoring of the procedure by ftir spectroscopy", Journal of the American Oil Chemists' Society,  Vol. 83, No. 1, (2006), 53-57.

13.    Georgogianni, K., Kontominas, M., Pomonis, P., Avlonitis, D. and Gergis, V., "Conventional and in situ transesterification of sunflower seed oil for the production of biodiesel", Fuel Processing Technology,  Vol. 89, No. 5, (2008), 503-509.

14.    Yustianingsih, L., Zullaikah, S. and Ju, Y.-H., "Ultrasound assisted in situ production of biodiesel from rice bran", Journal of the Energy Institute,  (2013).

15.    Shiu, P.-J., Gunawan, S., Hsieh, W.-H., Kasim, N.S. and Ju, Y.-H., "Biodiesel production from rice bran by a two-step in-situ process", Bioresource Technology,  Vol. 101, No. 3, (2010), 984-989.

16.    Ketaren, S., "Pengantar teknologi minyak dan lemak pangan." (1986), UI Press. Jakarta.

17.    Andayani, G.N., "Pengaruh pengeringan terhadap sifat fisiko-kimia minyak biji karet (hevea brasiliensis) untuk penyamakan kulit",  (2008).

18.    Leung, D. and Guo, Y., "Transesterification of neat and used frying oil: Optimization for biodiesel production", Fuel Processing Technology,  Vol. 87, No. 10, (2006), 883-890.

19.    Eevera, T., Rajendran, K. and Saradha, S., "Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions", Renewable Energy,  Vol. 34, No. 3, (2009), 762-765.

20.    Meng, X., Chen, G. and Wang, Y., "Biodiesel production from waste cooking oil via alkali catalyst and its engine test", Fuel Processing Technology,  Vol. 89, No. 9, (2008), 851-857.

21.    Stamenkovic, O.S., Lazic, M., Todorovic, Z., Veljkovic, V. and Skala, D., "The effect of agitation intensity on alkali-catalyzed methanolysis of sunflower oil", Bioresource Technology,  Vol. 98, No. 14, (2007), 2688-2699.

22.    Singh, A.K., Fernando, S.D. and Hernandez, R., "Base-catalyzed fast transesterification of soybean oil using ultrasonication", Energy & Fuels,  Vol. 21, No. 2, (2007), 1161-1164.

23.    Ji, J., Wang, J., Li, Y., Yu, Y. and Xu, Z., "Preparation of biodiesel with the help of ultrasonic and hydrodynamic

 

 

 

 

 

 

 

 

 

 

 

 

 

cavitation", Ultrasonics,  Vol. 44, (2006), 411-414.

24.    Gogate, P.R., "Cavitational reactors for process intensification of chemical processing applications: A critical review", Chemical Engineering and Processing: Process Intensification,  Vol. 47, No. 4, (2008), 515-527.

25.    Ji, J.-b., Lu, X.-h., Cai, M.-q. and Xu, Z.-c., "Improvement of leaching process of geniposide with ultrasound", Ultrasonics Sonochemistry,  Vol. 13, No. 5, (2006), 455-462.

26.    Vilkhu, K., Mawson, R., Simons, L. and Bates, D., "Applications and opportunities for ultrasound assisted extraction in the food industry—a review", Innovative Food Science & Emerging Technologies,  Vol. 9, No. 2, (2008), 161-169.

27.    Canakci, M. and Sanli, H., "Biodiesel production from various feedstocks and their effects on the fuel properties", Journal of Industrial Microbiology & Biotechnology,  Vol. 35, No. 5, (2008), 431-441.

28.    Rath, M., Acharya, S., Patnnaik, P. and Roy, S., "Exergy and energy analysis of diesel engine using karanja methyl ester under varying compression ratio", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 8, (2014), 1259-1268.

29.    Choi, C. and Reitz, R., "A numerical analysis of the emissions characteristics of biodiesel blended fuels", Journal of Engineering for Gas Turbines and Power,  Vol. 121, No. 1, (1999), 31-37.

30.    Srivastava, A. and Prasad, R., "Triglycerides-based diesel fuels", Renewable and Sustainable Energy Reviews,  Vol. 4, No. 2, (2000), 111-133.

31.    Tariq, M., Ali, S. and Khalid, N., "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review", Renewable and Sustainable Energy Reviews,  Vol. 16, No. 8, (2012), 6303-6316.

32.    Goering, C., Schwab, A., Daugherty, M., Pryde, E. and Heakin, A., "Fuel properties of eleven vegetable oils", Transactions of the ASAE,  Vol. 25, No. 6, (1982), 1472-1477.

33.    Graboski, M.S. and McCormick, R.L., "Combustion of fat and vegetable oil derived fuels in diesel engines", Progress in Energy and Combustion Science,  Vol. 24, No. 2, (1998), 125-164.

34.    Hassani, M., Amini, G., Najafpour, G. and Rabiee, M., "A two-step catalytic production of biodiesel from waste cooking oil", International Journal of Engineering-Transactions C: Aspects,  Vol. 26, No. 6, (2012), 563-570.

35.    Jafarmadar, S. and Pashae, J., "Experimental study of the effect of castor oil biodiesel fuel on performance and emissions of turbocharged di diesel", International Journal of Engineering-Transactions B: Applications,  Vol. 26, No. 8, (2013), 905-911.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir