Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 29, No. 12 (December 2016) 1650-1658    Article in Press

downloaded Downloaded: 75   viewed Viewed: 1585

  INFLUENCE OF OPERATING VARIABLES ON PERFORMANCE OF NANOFILTRATION MEMBRANE FOR DYE REMOVAL FROM SYNTHETIC WASTEWATER USING RESPONSE SURFACE METHODOLOGY
 
M. Moradi, A. A. Zinatizadeh and S. Zinadini
 
( Received: July 08, 2016 – Accepted: November 11, 2016 )
 
 

Abstract    The textile industry is a water intensive industry that produces a large amount of highly colored wastewater that must be properly treated before disposal or reuse. In the present study, to verify the possibility of reusing textile wastewater with nanofilteration (NF), an attempt was made to treatment of synthetic reactive dye aqueous solution by commercial nanofiltration membrane. Experiments were conducted based on a central composite face-centered design and analyzed using response surface methodology. Dye concentration (10-50 mg/l), operating pressure (3–6 bar), and initial pH of the dye solution (3–9) were selected as the operating variables to analyze, optimize and model the process. The results showed that alkaline and acidic condition led to considerable increase in dye rejection and permeation flux that high quality of water could be recovered. This study clearly showed that response surface methodology was one of the suitable methods to optimize the operating conditions and maximize the dye removal. Also, the commercial NF membranes could be efficiently applied in the dye removal process in a one-stage process.

 

Keywords    Dye removal, textile wastewater, Direct red 16, nanofiltration membrane, RSM

 

چکیده    صنعت نساجی یک صنعت پرمصرف در آب است که مقدار زیادی فاضلاب شدیدا" رنگی تولید می کند که قبل از دفع یا استفاده مجدد می بایست بطور صحیح تصفیه شود. در مطالعه حاضر، به منظور بررسی امکان استفاده مجدد از فاضلاب نساجی با استفاده از نانوفیلتراسیون، تصفیه محلول رنگی آبکی توسط غشاء نانوفیلتراسیون تجاری انجام شد. طراحی آزمایشات بر اساس طرح مرکزی مرکب انجام و با استفاده از روش پاسخ سطحی تحلیل گردید. غلظت رنگ (10-50 میلی گرم بر لیتر)، فشار عملیاتی (3-5 بار) و pH اولیه محلول رنگی (3-9) بعنوان متغیرهای عملیاتی به منظور تحلیل، مدل سازی و بهینه سازی فرآیند انتخاب شدند. نتایج نشان داد که شرایط اسیدی و قلیایی سبب افزایش در حذف رنگ و شار عبوری گردید. این مطالعه نشان داد که روش پاسخ سطحی یک روش مناسب برای بهینه سازی شرایط راهبری بود. همچنین، غشاء های تجاری نانوفیلتراسیون می تواند بطور کارآمد حذف رنگ در یک فرآیند یک مرحله ای را انجام دهد.

References   

1.      Husain, Q., "Peroxidase mediated decolorization and remediation of wastewater containing industrial dyes: A review", Reviews in Environmental Science and Bio/Technology,  Vol. 9, No. 2, (2010), 117-140.

2.      Koyuncu, I., Kural, E. and Topacik, D., "Pilot scale nanofiltration membrane separation for waste management in textile industry", Water Science and Technology,  Vol. 43, No. 10, (2001), 233-240.

3.      Jiraratananon, R., Sungpet, A. and Luangsowan, P., "Performance evaluation of nanofiltration membranes for treatment of effluents containing reactive dye and salt", Desalination,  Vol. 130, No. 2, (2000), 177-183.

4.      Willmott, N., Guthrie, J. and Nelson, G., "The biotechnology approach to colour removal from textile effluent", Journal of the Society of Dyers and Colourists,  Vol. 114, No. 2, (1998), 38-41.

5.      Zollinger, H., "Colour chemistry: Synthesis properties and application of organic dyes and pigments", VCH Publishers, New York, (1991).

6.      Baughman, G. L. and Weber, E. J., "Transformation of dyes and related compounds in anoxic sediment: Kinetics and products", Environmental Science & Technology,  Vol. 28, No. 2, (1994), 267-276.

7.      Aleboyeh, A., Daneshvar, N. and Kasiri, M., "Optimization of CI acid red 14 azo dye removal by electrocoagulation batch process with response surface methodology", Chemical Engineering and Processing: Process Intensification,  Vol. 47, No. 5, (2008), 827-832.

8.      Torres, E., Bustos-Jaimes, I. and Le Borgne, S., "Potential use of oxidative enzymes for the detoxification of organic pollutants", Applied Catalysis B: Environmental,  Vol. 46, No. 1, (2003), 1-15.

9.      Robinson, T., McMullan, G., Marchant, R. and Nigam, P., "Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative", Bioresource Technology,  Vol. 77, No. 3, (2001), 247-255.

10.    Ramakrishna, K. R. and Viraraghavan, T., "Dye removal using low cost adsorbents", Water Science and Technology,  Vol. 36, No. 2-3, (1997), 189-196.

11.    Allegre, C., Moulin, P., Maisseu, M. and Charbit, F., "Treatment and reuse of reactive dyeing effluents", Journal of Membrane Science,  Vol. 269, No. 1, (2006), 15-34.

12.    Gaeta, S. and Fedele, U., "Recovery of water and auxiliary chemicals from effluents of textile dye houses", Desalination,  Vol. 83, No. 1, (1991), 183-194.

13.    Al-Degs, Y. S., El-Barghouthi, M. I., El-Sheikh, A. H. and Walker, G. M., "Effect of solution ph, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon", Dyes and Pigments,  Vol. 77, No. 1, (2008), 16-23.

14.    Lee, J.-W., Choi, S.-P., Thiruvenkatachari, R., Shim, W.-G. and Moon, H., "Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes", Dyes and pigments,  Vol. 69, No. 3, (2006), 196-203.

15.    Ciardelli, G. and Ranieri, N., "The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation", Water Research,  Vol. 35, No. 2, (2001), 567-572.

16.    Pala, A. and Tokat, E., "Color removal from cotton textile industry wastewater in an activated sludge system with various additives", Water Research,  Vol. 36, No. 11, (2002), 2920-2925.

17.    Ledakowicz, S., Solecka, M. and Zylla, R., "Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes", Journal of biotechnology,  Vol. 89, No. 2, (2001), 175-184.

18.    Chen, G., Chai, X., Po-Lock, Y. and Mi, Y., "Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation", Journal of Membrane Science,  Vol. 127, No. 1, (1997), 93-99.

19.    Marcucci, M., Ciardelli, G., Matteucci, A., Ranieri, L. and Russo, M., "Experimental campaigns on textile wastewater for reuse by means of different membrane processes", Desalination,  Vol. 149, No. 1, (2002), 137-143.

20.    Cassano, A., Molinari, R., Romano, M. and Drioli, E., "Treatment of aqueous effluents of the leather industry by membrane processes: A review", Journal of Membrane Science,  Vol. 181, No. 1, (2001), 111-126.

21.    Fersi, C., Gzara, L. and Dhahbi, M., "Treatment of textile effluents by membrane technologies", Desalination,  Vol. 185, No. 1, (2005), 399-409.

22.    Joshi, M., Mukherjee, A. and Thakur, B., "Development of a new styrene copolymer membrane for recycling of polyester fibre dyeing effluent", Journal of Membrane Science,  Vol. 189, No. 1, (2001), 23-40.

23.    Kim, I.-C. and Lee, K.-H., "Dyeing process wastewater treatment using fouling resistant nanofiltration and reverse osmosis membranes", Desalination,  Vol. 192, No. 1, (2006), 246-251.

24.    Hai, F. I., Yamamoto, K., Nakajima, F. and Fukushi, K., "Removal of structurally different dyes in submerged membrane fungi reactor—biosorption/pac-adsorption, membrane retention and biodegradation", Journal of Membrane Science,  Vol. 325, No. 1, (2008), 395-403.

25.    O’Neill, C., Hawkes, F. R., Hawkes, D. L., Lourenco, N. D., Pinheiro, H. M. and Delee, W., "Colour in textile effluents–sources, measurement, discharge consents and simulation: A review", Journal of Chemical Technology and Biotechnology,  Vol. 74, No. 11, (1999), 1009-1018.

26.    Daneshvar, N., Sorkhabi, H. A. and Kasiri, M., "Decolorization of dye solution containing acid red 14 by electrocoagulation with a comparative investigation of different electrode connections", Journal of Hazardous Materials,  Vol. 112, No. 1, (2004), 55-62.

27.    Daneshvar, N., Oladegaragoze, A. and Djafarzadeh, N., "Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters", Journal of Hazardous Materials,  Vol. 129, No. 1, (2006), 116-122.

28.    Alinsafi, A., Khemis, M., Pons, M., Leclerc, J., Yaacoubi, A., Benhammou, A. and Nejmeddine, A., "Electro-coagulation of reactive textile dyes and textile wastewater", Chemical Engineering and Processing: Process Intensification,  Vol. 44, No. 4, (2005), 461-470.

29.    Koyuncu, I., "Reactive dye removal in dye/salt mixtures by nanofiltration membranes containing vinylsulphone dyes: Effects of feed concentration and cross flow velocity", Desalination,  Vol. 143, No. 3, (2002), 243-253.

30.    Huang, J. and Zhang, K., "The high flux poly (m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination", Desalination,  Vol. 282, (2011), 19-26.

31.    Koyuncu, I., Topacik, D. and Wiesner, M. R., "Factors influencing flux decline during nanofiltration of solutions containing dyes and salts", Water Research,  Vol. 38, No. 2, (2004), 432-440.

32.    Cojocaru, C. and Zakrzewska-Trznadel, G., "Response surface modeling and optimization of copper removal from aqua solutions using polymer assisted ultrafiltration", Journal of Membrane Science,  Vol. 298, No. 1, (2007), 56-70.

33.    Ismail, A. F. and Lai, P., "Development of defect-free asymmetric polysulfone membranes for gas separation using response surface methodology", Separation and Purification Technology,  Vol. 40, No. 2, (2004), 191-207.

34.    Xiarchos, I., Jaworska, A. and Zakrzewska-Trznadel, G., "Response surface methodology for the modelling of copper removal from aqueous solutions using micellar-enhanced ultrafiltration", Journal of Membrane Science,  Vol. 321, No. 2, (2008), 222-231.

35.    Santafe-Moros, A., Gozalvez-Zafrilla, J., Lora-Garcia, J. and Garcia-Diaz, J., "Mixture design applied to describe the influence of ionic composition on the removal of nitrate ions using nanofiltration", Desalination,  Vol. 185, No. 1, (2005), 289-296.

36.    Khayet, M., Cojocaru, C. and Garcia-Payo, C., "Application of response surface methodology and experimental design in direct contact membrane distillation", Industrial & Engineering Chemistry Research,  Vol. 46, No. 17, (2007), 5673-5685.

37.    Xiangli, F., Wei, W., Chen, Y., Jin, W. and Xu, N., "Optimization of preparation conditions for polydimethylsiloxane (PDMS)/ceramic composite pervaporation membranes using response surface methodology", Journal of Membrane Science,  Vol. 311, No. 1, (2008), 23-33.

38.    Khayet, M., Cojocaru, C. and Zakrzewska-Trznadel, G., "Response surface modelling and optimization in pervaporation", Journal of Membrane Science,  Vol. 321, No. 2, (2008), 272-283.

39.    Idris, A., Kormin, F. and Noordin, M., "Application of response surface methodology in describing the performance of thin film composite membrane", Separation and Purification Technology,  Vol. 49, No. 3, (2006), 271-280.

40.    Daneshvar, N., Aleboyeh, A. and Khataee, A., "The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model", Chemosphere,  Vol. 59, No. 6, (2005), 761-767.

41.    Khuri, A. I. and Cornell, J. A., "Response surfaces: Designs and analyses, CRC press,  Vol. 152,  (1996).

42.    Norouzbahari, S., Roostaazad, R. and Hesampour, M., "Crude oil desalter effluent treatment by a hybrid UF/RO membrane separation process", Desalination,  Vol. 238, No. 1, (2009), 174-182.

43.    Chhatre, A. and Marathe, K., "Dynamic analysis and optimization of surfactant dosage in micellar enhanced ultrafiltration of nickel from aqueous streams", Separation Science and Technology,  Vol. 41, No. 12, (2006), 2755-2770.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir