IJE TRANSACTIONS C: Aspects Vol. 29, No. 12 (December 2016) 1684-1690    Article in Press

downloaded Downloaded: 72   viewed Viewed: 1998

S. Asadi Amiri and H. Hassanpour
( Received: July 19, 2016 – Accepted in Revised Form: November 11, 2016 )

Abstract    JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this method, a dictionary is learned via the single input blocky image using K-SVD. There is no need for any prior knowledge about the blocking artifacts. Experimental results on various images demonstrate that the proposed post-processing method can efficiently alleviate the blocking effects at low bit-rates and outperforms the existing methods.


Keywords    Image compression, blocking effect, post-processing, sparse representation, low bit-rate


چکیده    یکی از پر کاربردترین روش فشرده­سازی تصویر است، اما این روش منجر به اثرات بلوکی آزاردهنده در در نرخ­های بیت پایین می­شود. نمایش تنک یک تکنیک کارآمد است که می­تواند بسیاری از مسائل معکوس را در کاربردهای پردازش تصویر همچون حذف نویز و حذف اثر بلوکی حل نماید. در این مقاله، یک روش پس‌پردازش برای کاهش اثرات بلوکی با نمایش تنک پیشنهاد شده است. در این روش، یک واژه­نامه با تک تصویر بلوکی ورودی با استفاده از K-SVD آموزش داده می‌شود. نیازی به دانستن دانش پیشین در مورد اثرات بلوکی نمی­باشد. نتایج تجربی بر روی تصاویر مختلف نشان داد که پس­پردازش پیشنهای به صورت کارآمد می­تواند اثرات بلوکی را در نرخ بیت پایین حذف نماید و برتر از روش­های موجود است.


1.      Singh, J., Singh, S., Singh, D. and Uddin, M., "A signal adaptive filter for blocking effect reduction of jpeg compressed images", AEU-International Journal of Electronics and Communications,  Vol. 65, No. 10, (2011), 827-839.

2.      Zhang, Y., Salari, E. and Zhang, S., "Reducing blocking artifacts in jpeg-compressed images using an adaptive neural network-based algorithm", Neural Computing and Applications,  Vol. 22, No. 1, (2013), 3-10.

3.      Lin, W. and Dong, L., "Adaptive downsampling to improve image compression at low bit rates", IEEE Transactions on Image Processing,  Vol. 15, No. 9, (2006), 2513-2521.

4.      Yang, Y., Galatsanos, N.P. and Katsaggelos, A.K., "Regularized reconstruction to reduce blocking artifacts of block discrete cosine transform compressed images", IEEE Transactions on Circuits and Systems for Video Technology,  Vol. 3, No. 6, (1993), 421-432.

5.      Paek, H., Kim, R.-C. and Lee, S.-U., "On the pocs-based postprocessing technique to reduce the blocking artifacts in transform coded images", IEEE Transactions on Circuits and Systems for Video Technology,  Vol. 8, No. 3, (1998), 358-367.

6.      Jeong, Y., Kim, I. and Kang, H., "A practical projection-based postprocessing of block-coded images with fast convergence rate", IEEE Transactions on Circuits and Systems for Video Technology,  Vol. 10, No. 4, (2000), 617-623.

7.      Kim, Y., Park, C.-S. and Ko, S.-J., "Fast pocs based post-processing technique for hdtv", IEEE Transactions on Consumer Electronics,  Vol. 49, No. 4, (2003), 1438-1447.

8.      Zhai, G., Zhang, W., Yang, X., Lin, W. and Xu, Y., "Efficient image deblocking based on postfiltering in shifted windows", IEEE Transactions on Circuits and Systems for Video Technology,  Vol. 18, No. 1, (2008), 122-126.

9.      Tai, S.-C., Chen, Y.-Y. and Sheu, S.-F., "Deblocking filter for low bit rate mpeg-4 video", IEEE Transactions on Circuits and Systems for Video Technology,  Vol. 15, No. 6, (2005), 733-741.

10.    Yeh, C.-H., Ku, T.-F., Chen, M.-j. and Jhu, J.-a., "Post-processing deblocking filter algorithm for various video decoders", IET image processing,  Vol. 6, No. 5, (2012), 534-547.

11.    Kim, J. and Sim, C.-B., "Compression artifacts removal by signal adaptive weighted sum technique", IEEE Transactions on Consumer Electronics,  Vol. 57, No. 4, (2011), 1944-1952.

12.    Zhang, S. and Salari, E., "Reducing artifacts in coded images using a neural network aided adaptive fir filter", Neurocomputing,  Vol. 50, (2003), 249-269.

13.    Florentin-Nunez, M.N., Lopez-Rubio, E. and Lopez-Rubio, F.J., "Adaptive kernel regression and probabilistic self-organizing maps for jpeg image deblocking", Neurocomputing,  Vol. 121, (2013), 32-39.

14.    Jung, C., Jiao, L., Qi, H. and Sun, T., "Image deblocking via sparse representation", Signal Processing: Image Communication,  Vol. 27, No. 6, (2012), 663-677.

15.    Yeh, C.-H., Kang, L.-W., Chiou, Y.-W., Lin, C.-W. and Jiang, S.-J.F., "Self-learning-based post-processing for image/video deblocking via sparse representation", Journal of Visual Communication and Image Representation,  Vol. 25, No. 5, (2014), 891-903.

16.    Fadili, M.J., Starck, J.-L., Bobin, J. and Moudden, Y., "Image decomposition and separation using sparse representations: An


overview", Proceedings of the IEEE,  Vol. 98, No. 6, (2010), 983-994.

17.    Kang, L.-W., Lin, C.-W. and Fu, Y.-H., "Automatic single-image-based rain streaks removal via image decomposition", IEEE Transactions on Image Processing,  Vol. 21, No. 4, (2012), 1742-1755.

18.    Kang, L.-W., Lin, C.-W., Lin, C.-T. and Lin, Y.-C., "Self-learning-based rain streak removal for image/video", International Symposium on Circuits and Systems, IEEE. (2012), 1871-1874.

19.    Hassanpour, H. and Ghadi, A.R., "Image enhancement via reducing impairment effects on image components", International Journal of Engineering-Transactions B: Applications,  Vol. 26, No. 11, (2013), 1267-1274.

20.    Mairal, J., Bach, F., Ponce, J. and Sapiro, G., "Online learning for matrix factorization and sparse coding", Journal of Machine Learning Research,  Vol. 11, No. Jan, (2010), 19-60.

21.    Aharon, M., Elad, M. and Bruckstein, A., "K-svd: An algorithm for designing of overcomplete dictionaries for sparse representation technion—israel inst. Of technology, 2005", Tech. Ref.

22.    Mallat, S.G. and Zhang, Z., "Matching pursuits with time-frequency dictionaries", IEEE Transactions on Signal Processing,  Vol. 41, No. 12, (1993), 3397-3415.

23.    Asadi Amiri, S., Hassanpour, H., Marouzi, O.R., "No-reference image quality assessment based on localized dct for jpeg compressed images", Multimedia Tools and Applications,  (2016).

24.    Vu, C.T., Phan, T.D. and Chandler, D.M., ": A spectral and spatial measure of local perceived sharpness in natural images", IEEE Transactions on Image Processing,  Vol. 21, No. 3, (2012), 934-945.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir