Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 29, No. 12 (December 2016) 1765-1774    Article in Press

downloaded Downloaded: 162   viewed Viewed: 2178

  THERMODYNAMIC ANALYSIS AND OPTIMIZATION OF A NOVEL COGENERATION SYSTEM: COMBINATION OF A GAS TURBINE WITH SUPERCRITICAL CO2 AND ORGANIC RANKINE CYCLES (TECHNICAL NOTE)
 
H. Nami, F. Mohammadkhani and F. Ranjbar
 
( Received: August 04, 2016 – Accepted in Revised Form: November 11, 2016 )
 
 

Abstract    Thermodynamic analysis of a novel combined system which is combination of methane fired gas turbine cogeneration system (CGAM) with a supercritical CO2 recompression Brayton cycle (SCO2) and an Organic Rankine Cycle (ORC) is reported. Also, a comprehensive parametric study is performed to investigate the effects on the performance of the proposed system of some important parameters. Finally, a thermodynamic optimization is done to maximize energy and exergy efficiencies. The results showed that, the energy and exergy efficiencies are maximized at particular compressor pressure ratios and the values depend on the operating parameters of the system. Energy and exergy efficiencies are determined to be 85.33% and 54.18%, respectively, for the proposed system under the base condition. Moreover, the parametric study showed that in addition to the operating parameters of the system, ambient temperature has also an important effect on the system performance as energy efficiency increases and exergy efficiency decreases with the ambient temperature increment.

 

Keywords    combined cycle, SCO2, ORC, energy, exergy, optimization

 

چکیده    تحلیل ترمودینامیکی یک سیستم ترکیبی جدید بر مبنای ترکیب سیستم تولید همزمان توربین گاز، سیستم بازتراکمی فوق بحرانی دی­اکسید کربن و سیکل رانکین آلی ارایه شده است. یک مطالعه­ی پارامتری جامع برای بررسی اثر پارامترهای مهم روی عملکرد سیستم پیشنهادی انجام گردیده و نهایتا یک بهینه سازی ترمودینامیکی جهت دست­یابی به راندمان انرژی و اگزرژی بیشینه آورده شده است. نتایج نشان می­دهد که راندمان انرژی و اگزرژی سیستم در یک مقدار مشخصی از نسبت فشار بیشینه می­شود که این مقدار مشخص به پارامترهای دیگری نیز بستگی دارد. راندمان انرژی و اگزرژی برای سیستم پیشنهادی به ترتیب 33/85 و 18/54 درصد در شرایط پایه می­باشد. همچنین مطالعه­ی پارامتری نشان داد که علاوه بر پارامترهای طراحی، دمای محیط نیز روی عملکرد سیستم اثر می­گذارد به ترتیبی که افزایش دمای محیط، راندمان انرژی را افزایش داده و راندمان اگزرژی را کاهش می­دهد.

References   

1.      Ameri, M., Ahmadi, P. and Hamidi, A., "Energy, exergy and exergoeconomic analysis of a steam power plant: A case study", International Journal of Energy Research,  Vol. 33, No. 5, (2009), 499-512.

2.      Rosen, M.A. and Dincer, I., "Exergoeconomic analysis of power plants operating on various fuels", Applied Thermal Engineering,  Vol. 23, No. 6, (2003), 643-658.

3.      Balli, O. and Aras, H., "Energetic and exergetic performance evaluation of a combined heat and power system with the micro gas turbine (MGTCHP)", International Journal of Energy Research,  Vol. 31, No. 14, (2007), 1425-1440.

4.      Bejan, A. and Tsatsaronis, G., "Thermal design and optimization, John Wiley & Sons,  (1996).

5.      Frangopoulos, C.A., "Application of the thermoeconomic functional approach to the CGAM problem", Energy,  Vol. 19, No. 3, (1994), 323-342.

6.      Valero, A., Lozano, M.A., Serra, L., Tsatsaronis, G., Pisa, J., Frangopoulos, C. and von Spakovsky, M.R., "CGAM problem: Definition and conventional solution", Energy,  Vol. 19, No. 3, (1994), 279-286.

7.      Von Spakovsky, M.R., "Application of engineering functional analysis to the analysis and optimization of the CGAM problem", Energy,  Vol. 19, No. 3, (1994), 343-364.

8.      Tsatsaronis, G. and Pisa, J., "Exergoeconomic evaluation and optimization of energy systems—application to the cgam problem", Energy,  Vol. 19, No. 3, (1994), 287-321.

9.      Valero, A., Lozano, M., Serra, L. and Torres, C., "Application of the exergetic cost theory to the CGAM problem", Energy,  Vol. 19, No. 3, (1994), 365-381.

10.    Wang, X. and Dai, Y., "Exergoeconomic analysis of utilizing the transcritical CO2 cycle and the orc for a recompression supercritical CO2 cycle waste heat recovery: A comparative study", Applied Energy,  Vol. 170, (2016), 193-207.

11.    Angelino, G., "Carbon dioxide condensation cycles for power production", Journal of Engineering for Power,  Vol. 90, No. 3, (1968), 287-295.

12.    Sarkar, J., "Second law analysis of supercritical CO2 recompression brayton cycle", Energy,  Vol. 34, No. 9, (2009), 1172-1178.

13.    Schuster, A., Karellas, S., Kakaras, E. and Spliethoff, H., "Energetic and economic investigation of organic rankine cycle applications", Applied Thermal Engineering,  Vol. 29, No. 8, (2009), 1809-1817.

14.    Drescher, U. and Bruggemann, D., "Fluid selection for the organic rankine cycle (ORC) in biomass power and heat plants", Applied Thermal Engineering,  Vol. 27, No. 1, (2007), 223-228.

15.    Lazzaretto, A. and Toffolo, A., "Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design", Energy,  Vol. 29, No. 8, (2004), 1139-1157.

16.    Khaljani, M., Saray, R.K. and Bahlouli, K., "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic rankine cycle", Energy,  Vol. 93, (2015), 2136-2145.

17.    Khanmohammadi, S., Atashkari, K. and Kouhikamali, R., "Exergoeconomic multi-objective optimization of an externally fired gas turbine integrated with a biomass gasifier", Applied Thermal Engineering,  Vol. 91, (2015), 848-859.

18.    Akbari, A.D. and Mahmoudi, S.M., "Thermoeconomic analysis & optimization of the combined supercritical CO2 (carbon dioxide) recompression brayton/organic rankine cycle", Energy,  Vol. 78, No., (2014), 501-512.

19.    Kim, Y., Kim, C. and Favrat, D., "Transcritical or supercritical CO2 cycles using both low-and high-temperature heat sources", Energy,  Vol. 43, No. 1, (2012), 402-415.

20.    Saeidi, S., Mahmoudi, S., Nami, H. and Yari, M., "Energy and exergy analyses of a novel near zero emission plant: Combination of matiant cycle with gasification unit", Applied Thermal Engineering,  Vol. 108, (2016), 893-904.

21.    Nami, H., Mahmoudi, S. and Nemati, A., "Exergy, economic and environmental impact assessment and optimization of a novel cogeneration system including a gas turbine, a supercritical CO2 and an organic rankine cycle (GT-HRSG/SCO2)", Applied Thermal Engineering,  Vol. 110, (2017), 1315-1330.

22.    Mohammadkhani, F., Ranjbar, F. and Yari, M., "A comparative study on the ammonia–water based bottoming power cycles: The exergoeconomic viewpoint", Energy,  Vol. 87, (2015), 425-434.

23.    Mohammadkhani, F., Shokati, N., Mahmoudi, S., Yari, M. and Rosen, M., "Exergoeconomic assessment and parametric study of a gas turbine-modular helium reactor combined with two organic rankine cycles", Energy,  Vol. 65, (2014), 533-543.

24.    Nami, H., Ranjbar, F., Yari, M. and Saeidi, S., "Thermodynamic analysis of a modified oxy-fuel cycle, high steam content graz cycle with a dual-pressure heat recovery steam generator", International Journal of Exergy,  Vol. 21, No. 3, (2016), 331-346.

25.    Nemati, A., Nami, H., Yari, M., Ranjbar, F. and Kolvir, H.R., "Development of an exergoeconomic model for analysis and multi-objective optimization of a thermoelectric heat pump", Energy Conversion and Management,  Vol. 130, (2016), 1-13.

26.    Moran, M.J., Shapiro, H.N., Boettner, D.D. and Bailey, M.B., "Fundamentals of engineering thermodynamics, John Wiley & Sons,  (2010).

27.    Nami, H., Mohammadkhani, F. and Ranjbar, F., "Utilization of waste heat from GTMHR for hydrogen generation via combination of organic rankine cycles and PEM electrolysis", Energy Conversion and Management,  Vol. 127, (2016), 589-598.

28.    Nemati, A., Barzegar, R. and Khalilarya, S., "The effects of injected fuel temperature on exergy balance under the various operating loads in a di diesel engine", International Journal of Exergy,  Vol. 17, No. 1, (2015), 35-53.

29.    Kanoglu, M., Ayanoglu, A. and Abusoglu, A., "Exergoeconomic assessment of a geothermal assisted high temperature steam electrolysis system", Energy,  Vol. 36, No. 7, (2011), 4422-4433.

30.    Adrian, B., "Advanced engineering thermodynamics" (1988), John Wiley & Sons, Inc.

31.    Sadeghlu, A., Yari, M. and Dizaji, H.B., "Simulation study of a combined adsorption refrigeration system", Applied Thermal Engineering,  Vol. 87, (2015), 185-199.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir