|

|
IJE TRANSACTIONS C: Aspects Vol. 29, No. 12 (December 2016) 1659-1669
|
Downloaded:
416 |
|
Viewed:
2831 |
|
|
REMOVAL OF CONGO RED ANIONIC DYE FROM AQUEOUS SOLUTION USING ‎POLYANILINE/TIO2 AND POLYPYRROLE/TIO2 NANOCOMPOSITES: ISOTHERM, KINETIC, ‎AND THERMODYNAMIC STUDIES
|
|
|
M. Tanzifi, K. Karimipour, M. Najafifard and S. Mirchenari
|
|
|
( Received:
August 17, 2016
– Accepted in Revised Form: November 11, 2016 )
|
|
|
Abstract
The
present study seeks to investigate the capacity of
polyaniline/titanium dioxide (PAn/TiO2) and
Polypyrrole/titanium
dioxide (PPy/TiO2) nano-adsorbents to adsorb Congo red anionic dye
(CR) from aqueous
solution. The variables effective in CR
adsorption, including adsorbent dose, pH of the solution, contact time,
initial
dye concentration, and temperature were examined. The study yielded the result
that a decrease in pH increases
the adsorption capacity of both nano-adsorbents.
The adsorbent dose and optimum contact time of PAn/TiO2 and
PPy/TiO2
nano-adsorbents were [0.1 gr and 20 min] and [0.2 gr and 60 min], respectively.
The adsorption
kinetics was studied with the pseudo-first-order,
pseudo-second-order, and Weber–Morris equations. Kinetic studies
showed
that the CR adsorption process onto both nano-adsorbents followed
the
pseudo-second-order kinetics model, which indicates that
the adsorption
process is chemisorption-controlled. Langmuir,
Freundlich, Temkin, and Dubinin–Radushkevich Isotherms were
applied to the adsorption data to estimate the maximum adsorption capacity
as well as the
intensity and energy of adsorption. The experimental data were
best represented by Freundlich isotherm model compared to the
other models. Analysis of data with
Dubinin-Radushkevich isotherm showed that
the adsorption of CR onto both nano-adsorbents is a chemisorption
process.
Moreover, Thermodynamic parameters such as ∆G, ∆H, and ∆S were
calculated. The results showed
that the adsorption of CR onto both
nano-adsorbents was spontaneous and exothermic.
|
|
|
Keywords
Polyaniline, Polypyrrole, Titanium dioxide, Adsorption, Kinetic studies, Isotherm, Thermodynamic, Congo red.
|
|
|
چکیده
در پژوهش حاضر، توانایی نانوجاذب های پلی آنیلین/دی اکسید تیتانیوم و
پلی پیرول/دی اکسید تیتانیوم در جذب سطحی رنگزای آنیونی قرمز کنگو (CR) از محلول های
آبی مورد بررسی قرار گرفت. تاثیر متغیرهای موثر بر فرآیند جذب سطحی CR از جمله مقدار
جاذب، pH محلول، زمان
تماس، غلظت اولیه رنگزا و دما بررسی شد. نتایج حاصل از پژوهش نشان داد که با کاهش pH راندمان جذب
سطحی رنگزا در مورد هر دو نانوجاذب افزایش یافت. مقدار جاذب و زمان بهینه جذب برای
نانوکامپوزیت های پلی آنیلین/دی اکسید تیتانیوم و پلی پیرول/دی اکسید تیتانیوم به
ترتیب (0.1گرم و 20دقیقه) و (0.2گرم و 60 دقیقه) بدست آمد. سینتیک های جذب سطحی توسط سه معادله شبه مرتبه اول، شبه مرتبه دوم و موریس وبر مورد مطالعه قرار گرفت.
مطالعات سینتیکی نشان داد که فرآیند جذب سطحی CR بر روی هر دو نانوجاذب از معادله سینتیکی شبه مرتبه دوم تبعیت می
کند که بیان کننده این است که فرآیند به وسیله جذب شیمیایی کنترل می شود. ایزوترم
های لانگمویر، فروندلیچ، تمکین و دابینین رادشکویچ، جهت تخمین حداکثر ظرفیت جذب،
شدت و انرژی جذب برای داده های جذب سطحی بکار گرفته شدند. ایزوترم فروندلیچ بهترین
همخوانی را با داده های تجربی در مقایسه با دیگر ایزوترم ها از خود نشان داد. آنالیز داده ها توسط
ایزوترم دابینین رادشکویچ نشان داد که جذب سطحی
رنگ CR بر روی هر دو
نانوجاذب، فرآیند شیمیایی می باشد. همچنین پارامترهای ترمودینامیکی از جمله DH، DG و DS محاسبه گردیدند. نتایج نشان داد که فرآیند جذب سطحی رنگ CR بر روی هر دو نانوجاذب، خود به خودی و
گرمازا می باشد.
|
|
References
1. Arslan,
I., Balcioglu, I.A. and Bahnemann, D.W., "Advanced chemical oxidation of
reactive dyes in simulated dyehouse effluents by ferrioxalate-fenton/UV-A and TiO2/uv-a
processes", Dyes and pigments, Vol.
47, No. 3, (2000), 207-218.
2. Daneshvar, N., Salari, D.
and Khataee, A., "Photocatalytic degradation of AZO dye acid red 14 in
water: Investigation of the effect of operational parameters", Journal
of Photochemistry and Photobiology A: Chemistry, Vol. 157, No. 1, (2003), 111-116.
3. de Lima, R.O.A., Bazo,
A.P., Salvadori, D.M.F., Rech, C.M., de Palma Oliveira, D. and de Aragao
Umbuzeiro, G., "Mutagenic and carcinogenic potential of a textile AZO dye
processing plant effluent that impacts a drinking water source", Mutation
Research/Genetic Toxicology and Environmental Mutagenesis, Vol. 626, No. 1, (2007), 53-60.
4. Pearce, C., Lloyd, J. and
Guthrie, J., "The removal of colour from textile wastewater using whole
bacterial cells: A review", Dyes and pigments, Vol. 58, No. 3, (2003), 179-196.
5. Ramalho, P.A.,
"Degradation of dyes with microorganisms: Studies with ascomycete
yeasts", Vol., No., (2005).
6. Tian, J., Xu, J., Zhu, F.,
Lu, T., Su, C. and Ouyang, G., "Application of nanomaterials in sample
preparation", Journal of Chromatography A,
Vol. 1300, (2013), 2-16.
7. El-Nahhal, I.M., Zourab,
S.M., Kodeh, F.S., Elmanama, A.A., Selmane, M., Genois, I. and Babonneau, F.,
"Nano-structured zinc oxide–cotton fibers: Synthesis, characterization and
applications", Journal of Materials Science: Materials in Electronics, Vol. 24, No. 10, (2013), 3970-3975.
8. Yan, X., Shi, B., Lu, J.,
Feng, C., Wang, D. and Tang, H., "Adsorption and desorption of atrazine on
carbon nanotubes", Journal of Colloid and Interface Science, Vol. 321, No. 1, (2008), 30-38.
9. Yusan, S., Korzhynbayeva,
K., Aytas, S., Tazhibayeva, S. and Musabekov, K., "Preparation and
investigation of structural properties of magnetic diatomite nanocomposites
formed with different iron content", Journal of Alloys and Compounds, Vol. 608, (2014), 8-13.
10. Zhang, W. and Wang, C.,
"Nanoscale metal particles for dechlorination of pce and pcbs", Environtal
Science and Technology, Vol. 31,
No. 7, (1997), 2154-2156.
11. Xu, Y. and Zhang, W.-x.,
"Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated
benzenes", Industrial & Engineering Chemistry Research, Vol. 39, No. 7, (2000), 2238-2244.
12. Asfaram, A., Ghaedi, M.,
Hajati, S., Goudarzi, A. and Dil, E.A., "Screening and optimization of
highly effective ultrasound-assisted simultaneous adsorption of cationic dyes
onto mn-doped Fe3O4-nanoparticle-loaded activated
carbon", Ultrasonics Sonochemistry,
Vol. 34, No., (2017), 1-12.
13. Fayazi, M., Ghanei-Motlagh,
M. and Taher, M.A., "The adsorption of basic dye (alizarin red s) from
aqueous solution onto activated carbon/γ- Fe3O4
nano-composite: Kinetic and equilibrium studies", Materials Science in
Semiconductor Processing, Vol.
40, No., (2015), 35-43.
14. Salem, A.-N.M., Ahmed, M.
and El-Shahat, M., "Selective adsorption of amaranth dye on Fe3O4/MgO
nanoparticles", Journal of Molecular Liquids, Vol. 219, (2016), 780-788.
15. Ali, I., AL-Othman, Z.A. and
Alwarthan, A., "Green synthesis of functionalized iron nano particles and
molecular liquid phase adsorption of ametryn from water", Journal
of Molecular Liquids, Vol. 221,
No., (2016), 1168-1174.
16. Hashemian, S., Dehghanpor,
A. and Moghahed, M., " Cu0.5Mn0.5Fe2O4
nano spinels as potential sorbent for
adsorption of brilliant green", Journal of Industrial and Engineering Chemistry, Vol. 24, No., (2015), 308-314.
17. Sun, H., She, P., Xu, K.,
Shang, Y., Yin, S. and Liu, Z., "A self-standing nanocomposite foam of
polyaniline@ reduced graphene oxide for flexible super-capacitors", Synthetic
Metals, Vol. 209, No., (2015),
68-73.
18. Pandey, S. and Ramontja, J.,
"Rapid, facile microwave-assisted synthesis of xanthan gum grafted
polyaniline for chemical sensor", International journal of biological
macromolecules, Vol. 89, No.,
(2016), 89-98.
19. Kim, B., Koncar, V. and
Dufour, C., "Polyaniline‐coated pet conductive yarns: Study of
electrical, mechanical, and electro‐mechanical properties", Journal
of Applied Polymer Science, Vol.
101, No. 3, (2006), 1252-1256.
20. Bhaumik, M., McCrindle,
R.I., Maity, A., Agarwal, S. and Gupta, V.K., "Polyaniline nanofibers as
highly effective re-usable adsorbent for removal of reactive black 5 from
aqueous solutions", Journal of Colloid and Interface Science, Vol. 466, No., (2016), 442-451.
21. Focke, W.W.,
"Conduction mechanisms in polyaniline", Massachusetts Institute of
Technology, (1987),
22. Raghavan, M. and Trivedi,
D., "Use of polyaniline in lead-acid battery", Synthetic Metals, Vol. 119, No. 1, (2001), 285-286.
23. Waltman, R.J. and Bargon,
J., "Reactivity/structure correlations for the electropolymerization of
pyrrole: An INDO/CNDO study of the reactive sites of oligomeric radical
cations", Tetrahedron, Vol. 40,
No. 20, (1984), 3963-3970.
24. Ruckenstein, E. and Chen,
J.-H., "Polypyrrole conductive composites prepared by
coprecipitation", Polymer, Vol. 32, No. 7, (1991), 1230-1235.
25. Weidlich, C., Mangold, K.-M.
and Jüttner, K., "Conducting polymers as ion-exchangers for water
purification", Electrochimica Acta,
Vol. 47, No. 5, (2001), 741-745.
26. Shanehsaz, M., Seidi, S.,
Ghorbani, Y., Shoja, S.M.R. and Rouhani, S., "Polypyrrole-coated magnetic
nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal
and kinetic study", Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy, Vol.
149, No., (2015), 481-486.
27. Salem, M.A., Elsharkawy,
R.G. and Hablas, M.F., "Adsorption of brilliant green dye by
polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic
studies", European Polymer Journal,
Vol. 75, (2016), 577-590.
28. Khalili, R. and Eisazadeh,
H., "Preparation and characterization of polyaniline/ Sb2O3
nanocomposite and its application for removal of pb (ІІ) from aqueous
media", International Journal of Engineering-Transactions B: Applications, Vol. 27, No. 2, (2013), 239-246.
29. Leong, S., Razmjou, A.,
Wang, K., Hapgood, K., Zhang, X. and Wang, H., "TiO2 based
photocatalytic membranes: A review", Journal of Membrane Science, Vol. 472, (2014), 167-184.
30. Alev, O., Sennik, E., Kilınc,
N. and Ozturk, Z.Z., "Gas sensor application of hydrothermally growth tio
2 nanorods", Procedia Engineering,
Vol. 120, (2015), 1162-1165.
31. Boroumandnia, A., Kasaeian,
A., Nikfarjam, A. and Mohammadpour, R., "Effect of TiO2
nanofiber density on organic-inorganic based hybrid solar cells", International
Journal of Engineering, Vol.
1025, No. 2495, (2014), 1133-1138.
32. Kashale, A.A., Gattu, K.P.,
Ghule, K., Ingole, V.H., Dhanayat, S., Sharma, R., Chang, J.-Y. and Ghule,
A.V., "Biomediated green synthesis of TiO2 nanoparticles for
lithium ion battery application", Composites Part B: Engineering, (2016).
33. Akhlaghian, F. and Sohrabi,
S., "Fe/TiO2 catalyst for photodegradation of phenol in
water", IJE Transactions A: Basics,
Vol. 28, (2015), 499-506.
34. Skoric, M.L., Terzic, I.,
Milosavljevic, N., Radetic, M., Saponjic, Z., Radoicic, M. and Krusic, M.K.,
"Chitosan-based microparticles for immobilization of TiO2
nanoparticles and their application for photodegradation of textile dyes",
European
Polymer Journal, Vol. 82, No.,
(2016), 57-70.
35. Roux, S., de AA Soler‐Illia,
G., Demoustier‐Champagne, S., Audebert, P. and Sanchez, C.,
"Titania/polypyrrole hybrid nanocomposites built from in‐situ
generated organically functionalized nanoanatase building blocks", Advanced
Materials, Vol. 15, No. 3,
(2003), 217-221.
36. Deivanayaki, S., Ponnuswamy,
V., Ashokan, S., Jayamurugan, P. and Mariappan, R., "Synthesis and
characterization of TiO2-doped polyaniline nanocomposites by
chemical oxidation method", Materials Science in Semiconductor
Processing, Vol. 16, No. 2,
(2013), 554-559.
37. Mall, I.D., Srivastava,
V.C., Agarwal, N.K. and Mishra, I.M., "Removal of congo red from aqueous
solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium
isotherm analyses", Chemosphere, Vol. 61, No. 4, (2005), 492-501.
38. Saygili, G.A.,
"Synthesis, characterization and adsorption properties of a novel
biomagnetic composite for the removal of congo red from aqueous medium", Journal
of Molecular Liquids, Vol. 211, (2015),
515-526.
39. Tanzifi, M., Kolaei, Z.T.
and Roushani, M., "Characterization of
polypyrrole-hydroxyethylcellulose/tio2 nanocomposite: Thermal properties and
afm analysis", International Journal of Engineering-Transactions B: Applications, Vol. 28, No. 5, (2014), 654.
40. Shayesteh, H.,
Rahbar-Kelishami, A. and Norouzbeigi, R., "Evaluation of natural and
cationic surfactant modified pumice for congo red removal in batch mode:
Kinetic, equilibrium, and thermodynamic studies", Journal of Molecular Liquids, Vol. 221, (2016), 1-11.
41. Lagergren, S., "About
the theory of so-called adsorption of soluble substances", (1898).
42. Ho, Y.-S. and McKay, G.,
"Pseudo-second order model for sorption processes", Process
biochemistry, Vol. 34, No. 5,
(1999), 451-465.
43. Weber, W.J. and Morris,
J.C., "Kinetics of adsorption on carbon from solution", Journal
of the Sanitary Engineering Division,
Vol. 89, No. 2, (1963), 31-60.
44. Langmuir, I., "The
constitution and fundamental properties of solids and liquids. Part i.
Solids", Journal of the American Chemical Society, Vol. 38, No. 11, (1916), 2221-2295.
45. Omraei, M., Esfandian, H.,
Katal, R. and Ghorbani, M., "Study of the removal of Zn (II) from aqueous
solution using polypyrrole nanocomposite", Desalination, Vol. 271, No. 1, (2011), 248-256.
46. Weber, T.W. and Chakravorti,
R.K., "Pore and solid diffusion models for fixed‐bed
adsorbers", AIChE Journal, Vol. 20,
No. 2, (1974), 228-238.
47. Uber, F., "Die
adsorption in losungen", Zeitschrift
fur Physikalische Chemie-Leipzig,
Vol. 57, (1985), 387-470.
48. Temkin, M. and Pyzhev, V.,
"Kinetics of ammonia synthesis on promoted iron catalysts", Acta
physiochim. URSS, Vol. 12, No.
3, (1940), 217-222.
49. Dubinin, M. and
Radushkevich, L., "Equation of the characteristic curve of activated
charcoal", Chem. Zentr, Vol. 1, No.
1, (1947), 875.
50. Javadian, H., Ghorbani, F.,
Tayebi, H.-a. and Asl, S.H., "Study of the adsorption of cd (ii) from
aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash;
kinetic, isotherm and thermodynamic studies", Arabian Journal of Chemistry, Vol. 8, No. 6, (2015), 837-849.
51. Yao, Y., Miao, S., Liu, S.,
Ma, L.P., Sun, H. and Wang, S., "Synthesis, characterization, and
adsorption properties of magnetic Fe3O4 graphene
nanocomposite", Chemical Engineering Journal, Vol. 184, (2012), 326-332.
52. Gautam, R.K., Rawat, V.,
Banerjee, S., Sanroman, M.A., Soni, S., Singh, S.K. and Chattopadhyaya, M.C.,
"Synthesis of bimetallic fe–zn nanoparticles and its application towards
adsorptive removal of carcinogenic dye malachite green and congo red in
water", Journal of Molecular Liquids,
Vol. 212, (2015), 227-236.
53. Akgul, M., "Enhancement
of the anionic dye adsorption capacity of clinoptilolite by Fe3+-grafting",
Journal
of hazardous materials, Vol.
267, (2014), 1-8.
54. Liu, X., Zhang, Z., Shi, W.,
Zhang, Y., An, S. and Zhang, L., "Adsorbing properties of magnetic
nanoparticles Mn-ferrites on removal of congo red from aqueous solution", Journal
of Dispersion Science and Technology,
Vol. 36, No. 4, (2015), 462-470.
55. Meng, F., Rong, G., Zhang,
X. and Huang, W., "Facile hydrothermal synthesis of hierarchically
structured γ-ALOOH for fast congo red removal", Materials Letters, Vol. 129, (2014), 114-117.
56. Gupta, V.K., Pathania, D.,
Agarwal, S. and Sharma, S., "Amputation of congo red dye from waste water
using microwave induced grafted luffa cylindrica cellulosic fiber", Carbohydrate
polymers, Vol. 111, (2014),
556-566.
57. Abbas, M. and Trari, M.,
"Kinetic, equilibrium and thermodynamic study on the removal of congo red
from aqueous solutions by adsorption onto apricot stone", Process
Safety and Environmental Protection,
Vol. 98, (2015), 424-436.
58. Wang, C., Le, Y. and Cheng,
B., "Fabrication of porous ZrO2 hollow sphere and its
adsorption performance to congo red in water", Ceramics International, Vol. 40, No. 7, (2014), 10847-10856.
|
|
|
|
|