IJE TRANSACTIONS C: Aspects Vol. 29, No. 12 (December 2016) 1659-1669    Article in Press

downloaded Downloaded: 416   viewed Viewed: 2831

M. Tanzifi, K. Karimipour, M. Najafifard and S. Mirchenari
( Received: August 17, 2016 – Accepted in Revised Form: November 11, 2016 )

Abstract    The present study seeks to investigate the capacity of polyaniline/titanium dioxide (PAn/TiO2) and Polypyrrole/titanium dioxide (PPy/TiO2) nano-adsorbents to adsorb Congo red anionic dye (CR) from aqueous solution. The variables effective in CR adsorption, including adsorbent dose, pH of the solution, contact time, initial dye concentration, and temperature were examined. The study yielded the result that a decrease in pH increases the adsorption capacity of both nano-adsorbents. The adsorbent dose and optimum contact time of PAn/TiO2 and PPy/TiO2 nano-adsorbents were [0.1 gr and 20 min] and [0.2 gr and 60 min], respectively. The adsorption kinetics was studied with the pseudo-first-order, pseudo-second-order, and Weber–Morris equations. Kinetic studies showed that the CR adsorption process onto both nano-adsorbents followed the pseudo-second-order kinetics model, which indicates that the adsorption process is chemisorption-controlled. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich Isotherms were applied to the adsorption data to estimate the maximum adsorption capacity as well as the intensity and energy of adsorption. The experimental data were best represented by Freundlich isotherm model compared to the other models. Analysis of data with Dubinin-Radushkevich isotherm showed that the adsorption of CR onto both nano-adsorbents is a chemisorption process. Moreover, Thermodynamic parameters such as ∆G, ∆H, and ∆S were calculated. The results showed that the adsorption of CR onto both nano-adsorbents was spontaneous and exothermic.


Keywords    Polyaniline, Polypyrrole, Titanium dioxide, Adsorption, Kinetic studies, Isotherm, Thermodynamic, Congo red.‎


چکیده    در پژوهش حاضر، توانایی نانوجاذب های پلی آنیلین/دی اکسید تیتانیوم و پلی پیرول/دی اکسید تیتانیوم در جذب سطحی رنگزای آنیونی قرمز کنگو (CR) از محلول های آبی مورد بررسی قرار گرفت. تاثیر متغیرهای موثر بر فرآیند جذب سطحی CR از جمله مقدار جاذب، pH محلول، زمان تماس، غلظت اولیه رنگزا و دما بررسی شد. نتایج حاصل از پژوهش نشان داد که با کاهش pH راندمان جذب سطحی رنگزا در مورد هر دو نانوجاذب افزایش یافت. مقدار جاذب و زمان بهینه جذب برای نانوکامپوزیت های پلی آنیلین/دی اکسید تیتانیوم و پلی پیرول/دی اکسید تیتانیوم به ترتیب (0.1گرم و 20دقیقه) و (0.2گرم و 60 دقیقه) بدست آمد. سینتیک های جذب سطحی توسط سه معادله شبه مرتبه اول، شبه مرتبه دوم و موریس وبر مورد مطالعه قرار گرفت. مطالعات سینتیکی نشان داد که فرآیند جذب سطحی CR بر روی هر دو نانوجاذب از معادله سینتیکی شبه مرتبه دوم تبعیت می کند که بیان کننده این است که فرآیند به وسیله جذب شیمیایی کنترل می شود. ایزوترم های لانگمویر، فروندلیچ، تمکین و دابینین رادشکویچ، جهت تخمین حداکثر ظرفیت جذب، شدت و انرژی جذب برای داده های جذب سطحی بکار گرفته شدند. ایزوترم فروندلیچ بهترین همخوانی را با داده های تجربی در مقایسه با دیگر ایزوترم ها از خود نشان داد. آنالیز داده ها توسط ایزوترم دابینین رادشکویچ نشان داد که جذب سطحی رنگ CR بر روی هر دو نانوجاذب، فرآیند شیمیایی می باشد. همچنین پارامترهای ترمودینامیکی از جمله DH، DG و DS محاسبه گردیدند. نتایج نشان داد که فرآیند جذب سطحی رنگ CR بر روی هر دو نانوجاذب، خود به خودی و گرمازا می باشد.


1.      Arslan, I., Balcioglu, I.A. and Bahnemann, D.W., "Advanced chemical oxidation of reactive dyes in simulated dyehouse effluents by ferrioxalate-fenton/UV-A and TiO2/uv-a processes", Dyes and pigments,  Vol. 47, No. 3, (2000), 207-218.

2.      Daneshvar, N., Salari, D. and Khataee, A., "Photocatalytic degradation of AZO dye acid red 14 in water: Investigation of the effect of operational parameters", Journal of Photochemistry and Photobiology A: Chemistry,  Vol. 157, No. 1, (2003), 111-116.

3.      de Lima, R.O.A., Bazo, A.P., Salvadori, D.M.F., Rech, C.M., de Palma Oliveira, D. and de Aragao Umbuzeiro, G., "Mutagenic and carcinogenic potential of a textile AZO dye processing plant effluent that impacts a drinking water source", Mutation Research/Genetic Toxicology and Environmental Mutagenesis,  Vol. 626, No. 1, (2007), 53-60.

4.      Pearce, C., Lloyd, J. and Guthrie, J., "The removal of colour from textile wastewater using whole bacterial cells: A review", Dyes and pigments,  Vol. 58, No. 3, (2003), 179-196.

5.      Ramalho, P.A., "Degradation of dyes with microorganisms: Studies with ascomycete yeasts",  Vol., No., (2005).

6.      Tian, J., Xu, J., Zhu, F., Lu, T., Su, C. and Ouyang, G., "Application of nanomaterials in sample preparation", Journal of Chromatography A,  Vol. 1300, (2013), 2-16.

7.      El-Nahhal, I.M., Zourab, S.M., Kodeh, F.S., Elmanama, A.A., Selmane, M., Genois, I. and Babonneau, F., "Nano-structured zinc oxide–cotton fibers: Synthesis, characterization and applications", Journal of Materials Science: Materials in Electronics,  Vol. 24, No. 10, (2013), 3970-3975.

8.      Yan, X., Shi, B., Lu, J., Feng, C., Wang, D. and Tang, H., "Adsorption and desorption of atrazine on carbon nanotubes", Journal of Colloid and Interface Science,  Vol. 321, No. 1, (2008), 30-38.

9.      Yusan, S., Korzhynbayeva, K., Aytas, S., Tazhibayeva, S. and Musabekov, K., "Preparation and investigation of structural properties of magnetic diatomite nanocomposites formed with different iron content", Journal of Alloys and Compounds,  Vol. 608, (2014), 8-13.

10.    Zhang, W. and Wang, C., "Nanoscale metal particles for dechlorination of pce and pcbs", Environtal Science and Technology,  Vol. 31, No. 7, (1997), 2154-2156.

11.    Xu, Y. and Zhang, W.-x., "Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes", Industrial & Engineering Chemistry Research,  Vol. 39, No. 7, (2000), 2238-2244.

12.    Asfaram, A., Ghaedi, M., Hajati, S., Goudarzi, A. and Dil, E.A., "Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto mn-doped Fe3O4-nanoparticle-loaded activated carbon", Ultrasonics Sonochemistry,  Vol. 34, No., (2017), 1-12.

13.    Fayazi, M., Ghanei-Motlagh, M. and Taher, M.A., "The adsorption of basic dye (alizarin red s) from aqueous solution onto activated carbon/γ- Fe3O4 nano-composite: Kinetic and equilibrium studies", Materials Science in Semiconductor Processing,  Vol. 40, No., (2015), 35-43.

14.    Salem, A.-N.M., Ahmed, M. and El-Shahat, M., "Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles", Journal of Molecular Liquids,  Vol. 219, (2016), 780-788.

15.    Ali, I., AL-Othman, Z.A. and Alwarthan, A., "Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water", Journal of Molecular Liquids,  Vol. 221, No., (2016), 1168-1174.

16.    Hashemian, S., Dehghanpor, A. and Moghahed, M., " Cu0.5Mn0.5Fe2O4  nano spinels as potential sorbent for adsorption of brilliant green", Journal of Industrial and Engineering Chemistry,  Vol. 24, No., (2015), 308-314.

17.    Sun, H., She, P., Xu, K., Shang, Y., Yin, S. and Liu, Z., "A self-standing nanocomposite foam of polyaniline@ reduced graphene oxide for flexible super-capacitors", Synthetic Metals,  Vol. 209, No., (2015), 68-73.

18.    Pandey, S. and Ramontja, J., "Rapid, facile microwave-assisted synthesis of xanthan gum grafted polyaniline for chemical sensor", International journal of biological macromolecules,  Vol. 89, No., (2016), 89-98.

19.    Kim, B., Koncar, V. and Dufour, C., "Polyanilinecoated pet conductive yarns: Study of electrical, mechanical, and electromechanical properties", Journal of Applied Polymer Science,  Vol. 101, No. 3, (2006), 1252-1256.

20.    Bhaumik, M., McCrindle, R.I., Maity, A., Agarwal, S. and Gupta, V.K., "Polyaniline nanofibers as highly effective re-usable adsorbent for removal of reactive black 5 from aqueous solutions", Journal of Colloid and Interface Science,  Vol. 466, No., (2016), 442-451.

21.    Focke, W.W., "Conduction mechanisms in polyaniline", Massachusetts Institute of Technology,  (1987),

22.    Raghavan, M. and Trivedi, D., "Use of polyaniline in lead-acid battery", Synthetic Metals,  Vol. 119, No. 1, (2001), 285-286.

23.    Waltman, R.J. and Bargon, J., "Reactivity/structure correlations for the electropolymerization of pyrrole: An INDO/CNDO study of the reactive sites of oligomeric radical cations", Tetrahedron,  Vol. 40, No. 20, (1984), 3963-3970.

24.    Ruckenstein, E. and Chen, J.-H., "Polypyrrole conductive composites prepared by coprecipitation", Polymer,  Vol. 32, No. 7, (1991), 1230-1235.

25.    Weidlich, C., Mangold, K.-M. and Jüttner, K., "Conducting polymers as ion-exchangers for water purification", Electrochimica Acta,  Vol. 47, No. 5, (2001), 741-745.

26.    Shanehsaz, M., Seidi, S., Ghorbani, Y., Shoja, S.M.R. and Rouhani, S., "Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: Removal and kinetic study", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,  Vol. 149, No., (2015), 481-486.

27.    Salem, M.A., Elsharkawy, R.G. and Hablas, M.F., "Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies", European Polymer Journal,  Vol. 75, (2016), 577-590.

28.    Khalili, R. and Eisazadeh, H., "Preparation and characterization of polyaniline/ Sb2O3 nanocomposite and its application for removal of pb (ІІ) from aqueous media", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 2, (2013), 239-246.

29.    Leong, S., Razmjou, A., Wang, K., Hapgood, K., Zhang, X. and Wang, H., "TiO2 based photocatalytic membranes: A review", Journal of Membrane Science,  Vol. 472, (2014), 167-184.

30.    Alev, O., Sennik, E., Kilınc, N. and Ozturk, Z.Z., "Gas sensor application of hydrothermally growth tio 2 nanorods", Procedia Engineering,  Vol. 120, (2015), 1162-1165.

31.    Boroumandnia, A., Kasaeian, A., Nikfarjam, A. and Mohammadpour, R., "Effect of TiO2 nanofiber density on organic-inorganic based hybrid solar cells", International Journal of Engineering,  Vol. 1025, No. 2495, (2014), 1133-1138.

32.    Kashale, A.A., Gattu, K.P., Ghule, K., Ingole, V.H., Dhanayat, S., Sharma, R., Chang, J.-Y. and Ghule, A.V., "Biomediated green synthesis of TiO2 nanoparticles for lithium ion battery application", Composites Part B: Engineering,  (2016).

33.    Akhlaghian, F. and Sohrabi, S., "Fe/TiO2 catalyst for photodegradation of phenol in water", IJE Transactions A: Basics,  Vol. 28, (2015), 499-506.

34.    Skoric, M.L., Terzic, I., Milosavljevic, N., Radetic, M., Saponjic, Z., Radoicic, M. and Krusic, M.K., "Chitosan-based microparticles for immobilization of TiO2 nanoparticles and their application for photodegradation of textile dyes", European Polymer Journal,  Vol. 82, No., (2016), 57-70.

35.    Roux, S., de AA SolerIllia, G., DemoustierChampagne, S., Audebert, P. and Sanchez, C., "Titania/polypyrrole hybrid nanocomposites built from insitu generated organically functionalized nanoanatase building blocks", Advanced Materials,  Vol. 15, No. 3, (2003), 217-221.

36.    Deivanayaki, S., Ponnuswamy, V., Ashokan, S., Jayamurugan, P. and Mariappan, R., "Synthesis and characterization of TiO2-doped polyaniline nanocomposites by chemical oxidation method", Materials Science in Semiconductor Processing,  Vol. 16, No. 2, (2013), 554-559.

37.    Mall, I.D., Srivastava, V.C., Agarwal, N.K. and Mishra, I.M., "Removal of congo red from aqueous solution by bagasse fly ash and activated carbon: Kinetic study and equilibrium isotherm analyses", Chemosphere,  Vol. 61, No. 4, (2005), 492-501.

38.    Saygili, G.A., "Synthesis, characterization and adsorption properties of a novel biomagnetic composite for the removal of congo red from aqueous medium", Journal of Molecular Liquids,  Vol. 211, (2015), 515-526.

39.    Tanzifi, M., Kolaei, Z.T. and Roushani, M., "Characterization of polypyrrole-hydroxyethylcellulose/tio2 nanocomposite: Thermal properties and afm analysis", International Journal of Engineering-Transactions B: Applications,  Vol. 28, No. 5, (2014), 654.

40.    Shayesteh, H., Rahbar-Kelishami, A. and Norouzbeigi, R., "Evaluation of natural and cationic surfactant modified pumice for congo red removal in batch mode: Kinetic, equilibrium, and thermodynamic studies", Journal of Molecular Liquids,  Vol. 221, (2016), 1-11.

41.    Lagergren, S., "About the theory of so-called adsorption of soluble substances",  (1898).

42.    Ho, Y.-S. and McKay, G., "Pseudo-second order model for sorption processes", Process biochemistry,  Vol. 34, No. 5, (1999), 451-465.

43.    Weber, W.J. and Morris, J.C., "Kinetics of adsorption on carbon from solution", Journal of the Sanitary Engineering Division,  Vol. 89, No. 2, (1963), 31-60.

44.    Langmuir, I., "The constitution and fundamental properties of solids and liquids. Part i. Solids", Journal of the American Chemical Society,  Vol. 38, No. 11, (1916), 2221-2295.

45.    Omraei, M., Esfandian, H., Katal, R. and Ghorbani, M., "Study of the removal of Zn (II) from aqueous solution using polypyrrole nanocomposite", Desalination,  Vol. 271, No. 1, (2011), 248-256.

46.    Weber, T.W. and Chakravorti, R.K., "Pore and solid diffusion models for fixedbed adsorbers", AIChE Journal,  Vol. 20, No. 2, (1974), 228-238.

47.    Uber, F., "Die adsorption in losungen", Zeitschrift fur Physikalische Chemie-Leipzig,  Vol. 57, (1985), 387-470.

48.    Temkin, M. and Pyzhev, V., "Kinetics of ammonia synthesis on promoted iron catalysts", Acta physiochim. URSS,  Vol. 12, No. 3, (1940), 217-222.

49.    Dubinin, M. and Radushkevich, L., "Equation of the characteristic curve of activated charcoal", Chem. Zentr,  Vol. 1, No. 1, (1947), 875.

50.    Javadian, H., Ghorbani, F., Tayebi, H.-a. and Asl, S.H., "Study of the adsorption of cd (ii) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies", Arabian Journal of Chemistry,  Vol. 8, No. 6, (2015), 837-849.

51.    Yao, Y., Miao, S., Liu, S., Ma, L.P., Sun, H. and Wang, S., "Synthesis, characterization, and adsorption properties of magnetic Fe3O4 graphene nanocomposite", Chemical Engineering Journal,  Vol. 184, (2012), 326-332.

52.    Gautam, R.K., Rawat, V., Banerjee, S., Sanroman, M.A., Soni, S., Singh, S.K. and Chattopadhyaya, M.C., "Synthesis of bimetallic fe–zn nanoparticles and its application towards adsorptive removal of carcinogenic dye malachite green and congo red in water", Journal of Molecular Liquids,  Vol. 212, (2015), 227-236.

53.    Akgul, M., "Enhancement of the anionic dye adsorption capacity of clinoptilolite by Fe3+-grafting", Journal of hazardous materials,  Vol. 267, (2014), 1-8.

54.    Liu, X., Zhang, Z., Shi, W., Zhang, Y., An, S. and Zhang, L., "Adsorbing properties of magnetic nanoparticles Mn-ferrites on removal of congo red from aqueous solution", Journal of Dispersion Science and Technology,  Vol. 36, No. 4, (2015), 462-470.

55.    Meng, F., Rong, G., Zhang, X. and Huang, W., "Facile hydrothermal synthesis of hierarchically structured γ-ALOOH for fast congo red removal", Materials Letters,  Vol. 129, (2014), 114-117.

56.    Gupta, V.K., Pathania, D., Agarwal, S. and Sharma, S., "Amputation of congo red dye from waste water using microwave induced grafted luffa cylindrica cellulosic fiber", Carbohydrate polymers,  Vol. 111, (2014), 556-566.

57.    Abbas, M. and Trari, M., "Kinetic, equilibrium and thermodynamic study on the removal of congo red from aqueous solutions by adsorption onto apricot stone", Process Safety and Environmental Protection,  Vol. 98, (2015), 424-436.

58.    Wang, C., Le, Y. and Cheng, B., "Fabrication of porous ZrO2 hollow sphere and its adsorption performance to congo red in water", Ceramics International,  Vol. 40, No. 7, (2014), 10847-10856.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir