Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 29, No. 2 (February 2016) 202-210    Article Under Final Proof

downloaded Downloaded: 344   viewed Viewed: 3092

  DESIGN AND IMPLEMENTATION OF A CONSTANT FREQUENCY SLIDING MODE CONTROLLER FOR A LUO CONVERTER
 
A. Goudarzian, H. Nasiri and N. Abjadi
 
( Received: May 19, 2015 – Accepted: January 26, 2016 )
 
 

Abstract    In this study, a robust controller for voltage regulation of the POESLL converter worked in continuous conduction mode is presented. POESLL converter is a DC/DC converter with a high voltage gain. DC/DC converters are used in telecommunication systems, power sources and industrial applications. Owing to the switching operation, the structure of the POESLL converter is highly non-linear. In addition, because of the load and input voltage variations, its structure is time-varying. In order to improve the performance and regulate the output voltage, a non-linear controller is needed. This controller is developed based on constant frequency sliding mode method. The sliding mode controllers can cope with the non-linear and time-varying structure of the DC/DC converters. The performance of the proposed controller is studied in PSIM software. A laboratory model of the proposed controller has been implemented. In this paper, design, simulations and practical results are presented to show the effective performance of the proposed controller for voltage regulation of the POESLL converter.

 

Keywords    POESLL converter, constant frequency sliding mode controller (SMC), laboratory prototype

 

چکیده    در اين مقاله، يک کنترﻝکننده مقاوم برای تنظيم ولتاژ مبدل POESLL در حالت هدايت پيوسته معرفی شده است. مبدل POESLL يک مبدل DC/DC با بهره انتقال ولتاژ بالا است. از اين مبدل ﻣﻲتوان در منابع توان ثابت، سيستمﻫﺎی مخابراتی و کاربردهای صنعتی استفاده کرد. بخاطر عملکرد کليدزنی، ساختار مبدل POESLL غيرخطی است. علاوه بر اين، به خاطر نوسانات بار و ولتاژ ورودی، ساختار اين مبدل متغير با زمان است. به منظور بهبود عملکرد و تنظيم ولتاژ خروجی، مبدل نياز به يک کنترﻝکننده مقاوم دارد. کنترﻝکننده پيشنهادشده در اين مقاله بر اساس روش کنترل مد لغزشی فرکانس ثابت طراحی ﻣﻲشود. کنترﻝکنندﻩهای مد لغزشی متناسب با ساختار غيرخطی و متغير با زمان مبدﻝهای DC/DC هستند. عملکرد کنترﻝکننده پيشنهادشده در اين مقاله در نرمﺍفزار PSIM بررسی شده است. علاوه بر اين يک نمونه از آن ساخته شده است. در اين مقاله، طراحی، شبيهﺳﺎزی و نتايج عملی ارائه ﻣﻲشوند تا عملکرد مؤثر کنترﻝکننده پيشنهادی برای تنظيم ولتاژ خروجی مبدل POESLL را نشان دهند.

References   

 

1.     Hegazy, O., Van Mierlo, J. and Lataire, P., "Analysis, modeling, and implementation of a multidevice interleaved dc/dc converter for fuel cell hybrid electric vehicles", Power Electronics, IEEE Transactions on,  Vol. 27, No. 11, (2012), 4445-4458.

2.     Silva-Ortigoza, R., Hernández-Guzmán, V.M., Antonio-Cruz, M. and Munoz-Carrillo, D., "Dc/dc buck power converter as a smooth starter for a dc motor based on a hierarchical control", Power Electronics, IEEE Transactions on,  Vol. 30, No. 2, (2015), 1076-1084.

3.     Luo, F.L. and Ye, H., "Positive output super-lift converters", Power Electronics, IEEE Transactions on,  Vol. 18, No. 1, (2003), 105-113.

4.     Biolkova, V., Kolka, Z. and Biolek, D., "State-space averaging (ssa) revisited: On the accuracy of ssa-based line-to-output frequency responses of switched dc-dc converters", WSEAS Transactions Circuits System Vol. 2, (2010), 81-90.

5.     Merdassi, A., Gerbaud, L. and Bacha, S., "Automatic generation of average models for power electronics systems in vhdl-ams and modelica modelling languages",  Journal of Modelling and Simulation of Systems,  Vol. 1, No. 3, (2010), 176-186.

6.     Mattavelli, P., Rossetto, L. and Spiazzi, G., "Small-signal analysis of dc-dc converters with sliding mode control", Power Electronics, IEEE Transactions on,  Vol. 12, No. 1, (1997), 96-102.

7.     ME, R.S.R.B., ME, S.D. and ME, S.J., "A closed loop control of quadratic boost converter using pid controller", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 11, (2014), 1653-1662.

8.     Rad, M.J. and Taheri, A., "Digital controller designbased on time domain for dc-dc buck converter", International Journal of Engineering-Transactions B: Applications,  Vol. 28, No. 5, (2015), 693-700.

9.     Maksimovic, D. and Zane, R., "Small-signal discrete-time modeling of digitally controlled pwm converters", Power Electronics, IEEE Transactions on,  Vol. 22, No. 6, (2007), 2552-2556.

10.   Sarvi, M., Derakhshan, M. and Sedighizadeh, M., "A new intelligent controller for parallel dc/dc converters", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 1, (2013), 131-142.

11.   Alfi, A., Hajizadeh, A. and Gholizade, N.H., "Optimal state feedback control design and stability analysis of boost dc-dc converters in fuel cell power systems using pso", International Journal of Engineering-Transactions A: Basics, Vol.  27, No. 1, (2013): 131-141

12.   Salimi, M., Soltani, J., Markadeh, G.A. and Abjadi, N.R., "Indirect output voltage regulation of dc-dc buck/boost converter operating in continuous and discontinuous conduction modes using adaptive backstepping approach", Power Electronics, IET,  Vol. 6, No. 4, (2013), 732-741.

13.   Utkin, V., Guldner, J. and Shi, J., "Sliding mode control in electro-mechanical systems, CRC press,  Vol. 34,  (2009).

14.   Umamaheswari, M.G., Uma, G. and Vijayalakshmi, K., "Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters", Power Electronics, IET,  Vol. 4, No. 9, (2011), 984-992.

15.   Kumar, K.R. and Jeevananthan, S., "Design and implementation of reduced-order sliding mode controller plus proportional double integral controller for negative output elementary super-lift luo-converter", Power Electronics, IET,  Vol. 6, No. 5, (2013), 974-989.

16.   Chen, Z., Hu, J. and Gao, W., "Closed-loop analysis and control of a non-inverting buck–boost converter", International Journal of Control,  Vol. 83, No. 11, (2010), 2294-2307.

17.   Chen, Z., Gao, W., Hu, J. and Ye, X., "Closed-loop analysis and cascade control of a nonminimum phase boost converter", Power Electronics, IEEE Transactions on,  Vol. 26, No. 4, (2011), 1237-1252.

18.   Chen, Z., "Pi and sliding mode control of a cuk converter", Power Electronics, IEEE Transactions on,  Vol. 27, No. 8, (2012), 3695-3703.

19.   Kumar, K.R. and Jeevananthan, S., "Hysteresis modulation based sliding mode control for positive output elementary super lift luo converter", International Journal of Electrical and Electronics Engineering,  Vol. 2, No. 3, (2009), 131-138.

20.   Kumar, K.R. and Jeevananthan, S., "Sliding mode control for current distribution control in paralleled positive output elementary super lift luo converters", Journal of Power Electronics,  Vol. 11, No. 5, (2011), 639-654.

21.   Fateh, M.M., Alfi, A., Moradi, M. and Modarres, H., "Sliding mode control of lorenz chaotic system on a moving fuzzy surface", in EUROCON'09. IEEE, (2009), 964-970.

22.   Tan, S.-C., Lai, Y.-M., Tse, C.K., Martínez-Salamero, L. and Wu, C.-K., "A fast-response sliding-mode controller for boost-type converters with a wide range of operating conditions", Industrial Electronics, IEEE Transactions on,  Vol. 54, No. 6, (2007), 3276-3286.

23.   Tan, S.-C., Lai, Y.-M. and Tse, C.K., "General design issues of sliding-mode controllers in dc–dc converters", Industrial Electronics, IEEE Transactions on,  Vol. 55, No. 3, (2008), 1160-1174.

24.   He, Y., Xu, W. and Cheng, Y., "A novel scheme for sliding-mode control of dc-dc converters with a constant frequency based on the averaging model", Journal of Power Electronics,  Vol. 10, No. 1, (2010), 1-8.

25.   Dupont, F.H., Rech, C., Gules, R. and Pinheiro, J.R., "Reduced-order model and control approach for the boost converter with a voltage multiplier cell", Power Electronics, IEEE Transactions on,  Vol. 28, No. 7, (2013), 3395-3404.  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir