IJE TRANSACTIONS B: Applications Vol. 29, No. 2 (February 2016) 246-254    Article Under Final Proof

downloaded Downloaded: 101   viewed Viewed: 2265

M. Bidabadi, B. Akhoondian and M. Harati
( Received: October 29, 2014 – Accepted: January 26, 2016 )

Abstract    In the present study, the effect of random distribution of reactants and products on laminar, 2D and steady-state flame propagation in aluminium particles has been investigated. The equations are solved only for lean mixture. The flame structure is assumed to consist of a preheat zone, a reaction zone and a post flame zone. It is presumed that in the preheat zone particles are heated and reaction does not exists. Then energy conservation equations of laminar flame had been solved two-dimensionally for different zones and algebraic equations of flame speed are obtained then a code was developed for modeling random situation of the combustion. Finally gas temperature distribution in different flame zones in the channel and also flame speed changes in terms of particles diameter, equivalence ratio, and channel width in random media are presented and compared with previous experimental and theoretical results. The gained results show a reasonable compatibility with the existed theories and experimental data


Keywords    Random distribution, Aluminium particles, Flame temperature, Burning velocity



در این تحقیق گسترش شعله آرام در محیط ذرات آلومینیوم با درنظر گرفتن تاثیر پخش ذرات بصورت تصادفی مورد بررسی قرار گرفته است.ساختار کلی شعله از سه محدوده پیش گرمایش، واکنش و پس از شعله تشکیل شده است. فرضیات مسئله بدین صورت است که در ناحیه پیش گرمایش واکنشی رخ نخواهد داد. معادله دوبعدی بقای انرژی برای هر یک از محدوده های شعله حل شده و نهایتا سرعت شعله بدست آمده است. برای مطالعه اثر تصادفی، تغییر پارامترهایی از قبیل قطر ذرات، نسبت اکووالانسی و عرض کانال انالیز و همچنین مشاهده نتایج توزیع دما و سرعت شعله و مقایسه آن با نتایج تجربی و تئوری های گذشته انجام پذیرفته است. مقایسه نتایج بیانگر این است که تصادفی کردن توزیع ذرات سبب بهتر شدن نتایج و نزدیک شدن به نتایج تجربی شده است



1.     G. H. Markstein, "Combustion of metals," American Institute of Aeronautics and Astronautics Journal, Vol. 1, (1963), 550-562.

2.     C. Drew, A. Gordon, R. Knipe, and J. Prentice, "Techniques for the study of the combustion of metals," American Institute of Aeronautics and Astronautics Journal, Vol. 6, (1968), 577-583.

3.     R. L. Geisler, "A global view of the use of aluminum fuel in solid rocket motors," American Institute of Aeronautics and Astronautics Paper, Vol. 3748, (2002).

4.     M. K. King, "Aluminum combustion in a solid rocket motor environment," Proceedings of the Combustion Institute, Vol. 32, (2009), 2107-2114.

5.     T. Bazyn, H. Krier, and N. Glumac, "Evidence for the transition from the diffusion-limit in aluminum particle combustion," Proceedings of the Combustion Institute,Vol. 31, (2007), 2021-2028.

6.     R. Eckhoff, Dust explosions in the process industries: identification, assessment and control of dust hazards: Gulf professional publishing, (2003).

7.     R. A. Yetter and F. L. Dryer, "Metal particle combustion and classification," Mico-gravity Combustion: Fire in Free Fall, (2001), 419-478.

8.     R. A. Yetter, G. A. Risha, and S. F. Son, "Metal particle combustion and nanotechnology," Proceedings of the Combustion Institute, Vol. 32, (2009), 1819-1838.

9.     H. M. Cassel, "Some fundamental aspects of dust flames", Vol. 6551: US Dept. of the Interior, Bureau of Mines, (1964).

10.   D. Ballal, "Flame propagation through dust clouds of carbon, coal, aluminium and magnesium in an environment of zero gravity," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, Vol. 385, (1983), 21-51,.

11.   S. Goroshin, M. Bidabadi, and J. Lee, "Quenching distance of laminar flame in aluminum dust clouds," Combustion and Flame, Vol. 105, (1996), 147-160.

12.   S. Goroshin, I. Fomenko, and J. Lee, "Burning velocities in fuel-rich aluminum dust clouds," in Symposium (International) on Combustion, (1996), 1961-1967.

13.   M. Bidabadi, S. Mostafavi, F. F. Dizaji, and H. B. Dizaji, "An Analytical Model for Flame Propagation through Moist Lycopodium Particles with Non-unity Lewis Number," International Journal of Engineering-Transactions B: Applications, Vol. 27, No. 2 (2014) 216-223.

14.   Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, "Analysis of nano-aluminum particle dust cloud combustion in different oxidizer environments," in 43 rd Aerospace Sciences Meeting and Exhibit, AIAA, (2005), 2005-0738.

15.   Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, "Effect of particle size on combustion of aluminum particle dust in air," Combustion and Flame, Vol. 156, (2009), 5-13.

16.   E. L. Dreizin, "Experimental study of aluminum particle flame evolution in normal and micro-gravity," Combustion and Flame, Vol. 116, (1999), 323-333.

17.   E. Dreizin, "Effect of Phase Changes on MetalParticle Combustion Processes," Combustion, Explosion and Shock Waves, Vol. 39, (2003), 681-693.

18.   B. Z. Eapen, V. Hoffmann, M. Schoenitz, and E. Dreizin, "Combustion of aerosolized spherical aluminum powders and flakes in air," Combustion Science and Technology, Vol. 176, (2004), 1055-1069.

19.   M. Jadidi, M. Bidabadi, and M. Hosseini, "Predictions of laminar flame in aluminium dust clouds with a two-dimensional analytical model," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 223, (2009), 915-925.

20.   Y. Huang, G. A. Risha, V. Yang, and R. A. Yetter, "Combustion of bimodal nano/micron-sized aluminum particle dust in air," Proceedings of the Combustion Institute, Vol. 31, (2007), 2001-2009.

21.   M. Beckstead, "Correlating aluminum burning times," Combustion, Explosion and Shock Waves, Vol. 41, (2005), 533-546.

22.   S. Goroshin, M. Kolbe, and J. H. Lee, "Flame speed in a binary suspension of solid fuel particles," Proceedings of the Combustion Institute, Vol. 28, (2000), 2811-2817.

23.   G. A. Risha, Y. Huang, R. A. Yetter, and V. Yang, "Experimental investigation of aluminum particle dust cloud combustion," in 43 rd Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics Journal, (2005), 2005-0739.

24.   M. Bidabadi, "An experimental and analytical study of laminar dust flame propagation," MC Gill, canada, (1996).

25.   C. R. Wylie, Advanced Engineering Mathematics: 3d Ed: McGraw-Hill, (1966).  

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir