Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 29, No. 2 (February 2016) 192-201    Article Under Final Proof

downloaded Downloaded: 273   viewed Viewed: 2924

  EVALUATION OF COAL WASTE ASH AND RICE HUSK ASH ON PROPERTIES OF PERVIOUS CONCRETE PAVEMENT
 
G. Shafabakhsh and S. Ahmadi
 
( Received: October 16, 2015 – Accepted: January 26, 2016 )
 
 

Abstract    The use of pervious concrete has been significantly considered in recent years. This consideration is due to the properties of pervious concrete in relating to the environmental sustainability that is utilized in the effective management of the runoff from rainfall. Coal extraction and rice husk obtained from milling, produces wastes that have no application and followed by environmental pollution. The purpose of the current research, is to evaluate of the effects of coal waste ash (CWA) and rice husk ash (RHA) and to compare between the mechanical properties of pervious concrete pavement. Therefore, both of these wastes were burned and after that XRF testing it was observed that they both achieve Pozzolanic properties. In order to strengthen pozzolanic cement paste has been used CWA and RHA as a cement replacement in concrete mixtures. The results indicated that the addition of RHA and CWA improved the mechanical properties of pervious concrete, however the optimum percentage is dramatically varying. Among these, the effectiveness of CWA is more significant compared to RHA. By increasing the amount of CWA and RHA to the optimum level, the permeability of the pervious concrete will decrease simultaneously. Meanwhile, after the optimum level, it will be reversed.

 

Keywords    Pervious Concrete Pavement, Mechanical Properties, Rice Husk Ash, Coal Waste Ash

 

چکیده    استفاده از بتن متخلخل به طور قابل توجهي در چند سال اخير مورد توجه قرار گرفته است. اين توجه به دليل ويژگي هاي بتن متخلخل در رابطه با محيط زيست پايدار در مورد مديريت موثر رواناب ناشي از بارندگي مورد توجه مي باشد. استخراج زغال سنگ و پوسته برنج بدست آمده از شالیکوبی، پسماندهایی را تولید می کند که هیچ کاربردی نداشته و آلودگی محیط زیست را در پی دارد. هدف از این پژوهش بررسی اثر ضایعات زغال سنگ سوخته و خاکستر پوسته برنج و مقایسه بین این دو بر خصوصیات مکانیکی روسازی بتنی متخلخل می باشد. بنابراین در این مطالعه هر دوی این مواد پسماند سوزانده شده و بعد از انجام آزمایشاتXRF مشخص گردیدکه هر دو این مواد خاصیت پوزولانی پیدا می کنند. در مطالعه حاضر به منظور تقویت خمیر سیمان از پودر ضایعاتی زغال سنگ سوخته و خاکستر پوسته برنج به عنوان جایگزین بخشی از سیمان در ترکیبات بتن استفاده شده است. نتایج نشان می­دهد اضافه شدن پودر ضایعاتی زغال سنگ سوخته و خاکستر پوسته برنج سبب بهبود خصوصیات مکانیکی بتن متخلخل می شوند این در حالی است که محدوده درصد بهینه آنها متغیر می­باشد. در این بین اثر پودر ضایعاتی زغال سنگ سوخته بسیار چشمگیرتر از خاکستر پوسته برنج بوده است و از طرف دیگر با افزایش مقدار پودر ضایعاتی زغال سنگ سوخته وخاکستر پوسته برنج تا مقدار بهینه نفوذپذیری بتن متخلخل کاهش و در ادامه افزایش می یابد.

References   

 

1.     Yahia, A. and Kabagire, K.D., "New approach to proportion pervious concrete", Construction and Building Materials,  Vol. 62, (2014), 38-46.

2.     Haselbach, L.M., "Potential for clay clogging of pervious concrete under extreme conditions", Journal of Hydrologic Engineering,  Vol. 15, No. 1, (2009), 67-69.

3.     Crouch, L., Smith, N., Walker, A.C., Dunn, T.R. and Sparkman, A., "Pervious pcc compressive strength in the laboratory and the field: The effects of aggregate properties and compactive effort", in Proceedings of Concrete Technology Forum: Focus on Pervious Concrete, (2006), 24-25.

4.     ACI 522R-10, Report on pervious concrete. Farmington Hills, Michigan: American Concrete Institute, (2010).

5.     Hesami, S., Ahmadi, S. and Nematzadeh, M., "Effects of rice husk ash and fiber on mechanical properties of pervious concrete pavement", Construction and Building Materials,  Vol. 53, (2014), 680-691.

6.     Naceri, A. and Chikouche Hamina, M., "Effects of pozzolanic admixture (waste bricks) on mechanical response of mortar", International Journal of Engineering Transactions B: Applications,  Vol. 21, (2008), 1-8.

7.     Ghasemi, M. and Marandi, S., "Laboratory studies of the effect of recycled glass powder additive on the properties of polymer modified asphalt binders", International Journal of Engineering-Transactions A: Basics,  Vol. 26, No. 10, (2013), 1183-1190.

8.     Elchalakani, M., "High strength rubberized concrete containing silica fume for the construction of sustainable road side barriers", in Structures, Elsevier. Vol. 1, (2015), 20-38.

9.     Goncalves, M. and Bergmann, C., "Thermal insulators made with rice husk ashes: Production and correlation between properties and microstructure", Construction and Building Materials,  Vol. 21, No. 12, (2007), 2059-2065.

10.   Montakarntiwong, K., Chusilp, N., Tangchirapat, W. and Jaturapitakkul, C., "Strength and heat evolution of concretes containing bagasse ash from thermal power plants in sugar industry", Materials & Design,  Vol. 49, (2013), 414-420.

11.   Zain, M.F.M., Islam, M., Mahmud, F. and Jamil, M., "Production of rice husk ash for use in concrete as a supplementary cementitious material", Construction and Building Materials,  Vol. 25, No. 2, (2011), 798-805.

12.   De Sensale, G.R., "Effect of rice-husk ash on durability of cementitious materials", Cement and Concrete Composites,  Vol. 32, No. 9, (2010), 718-725.

13.   Gastaldini, A., Da Silva, M., Zamberlan, F. and Neto, C.M., "Total shrinkage, chloride penetration, and compressive strength of concretes that contain clear-colored rice husk ash", Construction and Building Materials,  Vol. 54, (2014), 369-377.

14.   Madandoust, R., Ranjbar, M.M., Moghadam, H.A. and Mousavi, S.Y., "Mechanical properties and durability assessment of rice husk ash concrete", Biosystems Engineering,  Vol. 110, No. 2, (2011), 144-152.

15.   Rahman, M., Muntohar, A., Pakrashi, V., Nagaratnam, B. and Sujan, D., "Self compacting concrete from uncontrolled burning of rice husk and blended fine aggregate", Materials & Design,  Vol. 55, (2014), 410-415.

16.   Modarres, A. and Rahmanzadeh, M., "Application of coal waste powder as filler in hot mix asphalt", Construction and Building Materials,  Vol. 66, (2014), 476-483.

17.   Frias, M., De Rojas, M.S., Garcia, R., Valdés, A.J. and Medina, C., "Effect of activated coal mining wastes on the properties of blended cement", Cement and Concrete Composites,  Vol. 34, No. 5, (2012), 678-683.

18.   Kinuthia, J. and Nidzam, R., "Effect of slag and siliceous additions on the performance of stabilized coal waste backfill", in World of Coal Ash (WOCA) Conference, Lexington, KY, USA, (2009).

19.   Ardejani, F.D., Shokri, B.J., Moradzadeh, A., Shafaei, S.Z. and Kakaei, R., "Geochemical characterisation of pyrite oxidation and environmental problems related to release and transport of metals from a coal washing low-grade waste dump, shahrood, northeast iran", Environmental Monitoring and Assessment,  Vol. 183, No. 1-4, (2011), 41-55.

20.   Canovas, C., Olias, M., Nieto, J., Sarmiento, A. and Ceron, J., "Hydrogeochemical characteristics of the tinto and odiel rivers (sw spain). Factors controlling metal contents", Science of the Total Environment,  Vol. 373, No. 1, (2007), 363-382.

21.   Nair, D.G., Fraaij, A., Klaassen, A.A. and Kentgens, A.P., "A structural investigation relating to the pozzolanic activity of rice husk ashes", Cement and Concrete Research,  Vol. 38, No. 6, (2008), 861-869.

22.   Neville, A.M., "Properties of concrete", Longman Scientific and Technical, Singapore, (1995).

23.   ASTM D7348-13. "Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues," USA: Annual Book of ASTM Standards; (2008).

24.   Montes, F., Haselbach, L.M. and Valavala, S., "A new test method for porosity measurements of portland cement pervious concrete", Journal of ASTM International,  Vol. 2, No. 1, (2005), 1-13.

25.   Neithalath, N., Weiss, J. and Olek, J., "Characterizing enhanced porosity concrete using electrical impedance to predict acoustic and hydraulic performance", Cement and Concrete Research,  Vol. 36, No. 11, (2006), 2074-2085.

26.   ACI Committee 211, Guide for Selecting Proportions for No-slump Concrete, ACI 211.3R Report,(2006).

27.   Prokopski, G. and Halbiniak, J., "Interfacial transition zone in cementitious materials", Cement and Concrete Research,  Vol. 30, No. 4, (2000), 579-583.

28.   Lian, C. and Zhuge, Y., "Optimum mix design of enhanced permeable concrete–an experimental investigation", Construction and Building Materials,  Vol. 24, No. 12, (2010), 2664-2671.

29.   Mehta, P K and Monteiro, P J M, Concrete Microstructure, Properties and Materials, Indian Concrete Institute, Chennai, (1997).

30.   Report IPRF-01-G-002-05-7, Appendix B: Physical Properties of Cores Airport, Innovative Pavement Research Foundation, Washington, D.C.

31.   Schaefer, V.R., Wang, K., Suleiman, M.T. and Kevern, J.T., "Mix design development for pervious concrete in cold weather climates", National Concrete Pavement Technology Center, Iowa State Univ., Ames, Iowa, (2006), 85-96





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir