Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 29, No. 2 (February 2016) 236-245    Article Under Final Proof

downloaded Downloaded: 457   viewed Viewed: 3668

  NUMERICAL MODELING OF THE STEPPED PLANING HULL IN CALM WATER
 
M. Bakhtiari, S. Veysi and H. Ghassemi
 
( Received: November 10, 2015 – Accepted: January 26, 2016 )
 
 

Abstract    This article describes a 3D CFD (computational fluid dynamics) simulation implementation of the stepped planning hull in calm water. The turbulent free surface flow around the stepped planing hull is computed with a RANSE method, using the solver ANSYS-CFX. The turbulence model used is standard k–ε. In order to simulate the disturbed free surface, VOF model is implemented. The CFD model has been firstly validated using the available experimental data. The numerical results of drag, pressure distribution, wetted surface, water spray, wake profile and wave generated by the planing hull are presented and discussed at various speeds. Wake profiles calculated from present model are also compared with the ones calculated from Savitsky’s emprical equations at different speeds.

 

Keywords    Stepped hull; Turbulent free surface flow; VOF model; Drag; Wake profile

 

چکیده    در این مقاله، کاربرد یک شبیه سازی دینامیک سیالات محاسباتی سه بعدی برای یک شناور پلنینگ استپ دار توصیف می شود. جریان مغشوش سطح آزاد اطراف شناور پلنینگ استپ دار به روش RANS، با استفاده از حلگر ANSYS-CFX محاسبه می شود. مدل اغتشاشی بکارگرفته شده، مدل Standard k–ε است. به منظور شبیه سازی سطح آزاد مغشوش شده، از مدل حجم سیال (VOF) استفاده می شود. مدل CFD حاضر در ابتدا با استفاده از نتایج آزمایشگاهی اعتبار سنجی شده است. نتایج عددی بدست آمده برای درگ، توزیع فشار، سطح خیس، اسپری آب، پروفیل ویک و موج ایجاد شده توسط بدنه شناور در سرعت های مختلف ارائه و مورد بحث قرار می گیرند. همچنین پروفیل های ویک محاسبه شده توسط مدل حاضر، با پروفیل های محاسبه شده توسط معادلات تجربی Savitsky مقایسه می شوند.

References   

 

1.     Yousefi, R., Shafaghat, R. and Shakeri, M., "Hydrodynamic analysis techniques for high-speed planing hulls", Applied Ocean Research,  Vol. 42, (2013), 105-113.

2.     Savitsky, D., "Hydrodynamic design of planing hulls", Marine Technology,  Vol. 1, No. 1, (1964), 71–95 .

3.     Savitsky, D., DeLorme, M.F. and Datla, R., "Inclusion of whisker spray drag in performance prediction method for high-speed planing hulls", Marine Technology,  Vol. 44, No. 1, (2007), 35-56.

4.     Savander, B.R., Scorpio, S.M. and Taylor, R.K., "Steady hydrodynamic analysis of planing surfaces", Journal of Ship Research,  Vol. 46, No. 4, (2002), 248-279.

5.     Ghassemi, H. and Ghiasi, M., "A combined method for the hydrodynamic characteristics of planing crafts", Ocean Engineering,  Vol. 35, No. 3, (2008), 310-322.

6.     Hassan, G. and Su, Y.-m., "Determining the hydrodynamic forces on a planing hull in steady motion", Journal of Marine Science and Application,  Vol. 7, No. 3, (2008), 147-156.

7.     KOHANSAL, A., GHASSEMI, H. and GHIASI, M., "Hydrodynamic characteristics of high speed planing hulls, including trim effects", Turkish Journal of Engineering and Environmental Sciences,  Vol. 34, No. 3, (2011), 155-170.

8.     Kohansal, A.R. and Ghassemi, H., "A numerical modeling of hydrodynamic characteristics of various planing hull forms", Ocean Engineering,  Vol. 37, No. 5, (2010), 498-510.

9.     Seif, M., Mousavirad, S. and Sadat, H.S., "The effect of asymmetric water entry on the hydrodynamic impact",  Vol. 17, No. 2, (2004), 205-212.

10.   Caponnetto, M., "Practical cfd simulations for planing hulls", in Proc. of Second International Euro Conference on High Performance Marine Vehicles, Hamburg. (2001), 128-138.

11.   Pemberton, R., Turnock, S. and Watson, S., "Free surface cfd simulations of the flow around a planing plate",  In: FAST2001, Southampton, UK, (2001)

12.   Savander, B. and Rhee, S., "Steady planning hydrodynamics: Comparison of numerical and experimental results", Fluent Users’ Group Manchester,  (2003).

13.   Kihara, H., "A computing method for the flow analysis around a prismatic planing-hull", in HIPER 06: 5th International Conference on High-performance Marine Vehicles, Australian Maritime College. (2006).

14.   Brizzolara, S. and Serra, F., "Accuracy of cfd codes in the prediction of planing surfaces hydrodynamic characteristics", in 2nd International Conference on Marine Research and Transportation., (2007), 147-159.

15.   Fultz, E.R., "Cfd analysis of a pentahulled, air entrapment, high speed planing [sic] planning vessel", Monterey, California. Naval Postgraduate School,  (2008),

16.   Akkerman, I., Dunaway, J., Kvandal, J., Spinks, J. and Bazilevs, Y., "Toward free-surface modeling of planing vessels: Simulation of the fridsma hull using ale-vms", Computational Mechanics,  Vol. 50, No. 6, (2012), 719-727.

17.   Su, Y., Chen, Q., Shen, H. and Lu, W., "Numerical simulation of a planing vessel at high speed", Journal of Marine Science and Application,  Vol. 11, No. 2, (2012), 178-183.

18.   Subramanian, V.A., Subramanyam, P. and Ali, N.S., "Pressure and drag influences due to tunnels in high-speed planing craft", International shipbuilding progress,  Vol. 54, No. 1, (2007), 25-44.

19.   Ghassabzadeh, M. and Ghassemi, H., "Determining of the hydrodynamic forces on the multi-hull tunnel vessel in steady motion", Journal of the Brazilian Society of Mechanical Sciences and Engineering,  Vol. 36, No. 4, (2014), 697-708.

20.   Ghassabzadeh, M. and Ghassemi, H., "An innovative method for parametric design of planing tunnel vessel hull form", Ocean Engineering,  Vol. 60, (2013), 14-27.

21.   Savitsky, D. and Morabito, M., "Surface wave contours associated with the forebody wake of stepped planing hulls", Marine Technology,  Vol. 47, No. 1, (2010), 1-16.

22.   Svahn, D., "Performance prediction of hulls with transverse steps", A Report of Masters Thesis, The Royal Institute of Technology, KTH, Centre for Naval Architecture, (2009).

23.   Taunton, D., Hudson, D. and Shenoi, R., "Characteristics of a series of high speed hard chine planing hulls-part 1: Performance in calm water", International Journal of Small Craft Technology,  Vol. 152, (2010), 55-75.

24.   Grigoropoulos, G.J. and Damala, D.P., "Dynamic performance of the ntua double-chine series hull forms in random waves", in 11th international conference on Fast Sea Transportation FAST. (2011).

25.   Ghasemi, H., Mansouri, M. and Zaferanlouei, S., "Interceptor hydrodynamic analysis for handling trim control problems in the high-speed crafts", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 22,  (2011) 247-269

26.   Garland, W.R. and Maki, K.J., "A numerical study of a two-dimensional stepped planing surface", Journal of Ship Production and Design,  Vol. 28, No. 2, (2012), 60-72.

27.   Veysi, S.T.G., Bakhtiari, M., Ghassemi, H. and Ghiasi, M., "Toward numerical modeling of the stepped and non-stepped planing hull", Journal of the Brazilian Society of Mechanical Sciences and Engineering,  Vol. 37, No. 6, (2015), 1635-1645.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir