IJE TRANSACTIONS B: Applications Vol. 29, No. 2 (February 2016) 229-235    Article Under Final Proof

downloaded Downloaded: 117   viewed Viewed: 2309

M. Yuan
( Received: November 24, 2015 – Accepted: January 26, 2016 )

Abstract    This paper investigate the possibility and effectiveness of multi-mode vibration control of a plate through real-time FPGA (Field Programmable Gate Array) implementation. This type of embedded system offers true parallel and high throughput computation abilities. The control object is an aluminum panel, clamped to a Perspex box’s upper side. Two types of control laws are studied. The first belongs to non-model based control. This control law is designed to generate active damping within the designed bandwidth. The second control law is model based H-infinity robust control. A system identification process is needed before the controller synthesis. Each of the control law is implemented on a FPGA target, which is powerful to achieve high throughput control loop rates. The experimental control results demonstrate the non-model based control law has sufficient authority to suppress the interesting modes. The model-based robust control law’s control performance doesn’t has enough highlight compared to the previous method, which is not recommended for this application.


Keywords    FPGA control, multi-mode vibration control, real-time FPGA target, smart structure, plate


چکیده    در این مقاله امکان و اثربخشی چند حالت کنترل ارتعاش از یک صفحه از طریق زمان واقعی FPGA (درست برنامه ریزی دروازه آرایه) پیاده سازی بررسی میشود. این نوع از سیستمهای جاسازی شده توانایی محاسباتی توان بالا و موازی واقعی را ارائه میدهد. کنترلگر یک پنل آلومینیوم منگنه شده به سمت بالای یک جعبه پلاستیکی از جنس پرسپکس است. دو نوع از قوانین کنترل بررسی شدهاند. قانون اول متعلق به کنترل ناوابسته بر مدل است این قانون کنترل برای تولید میرایی فعال در پهنای باند طراحی شده است. قانون کنترل دوم مدل مبتنی بر کنترل مقاوم H-بی نهایت است. پیش از خروج از کنترل، فرایند شناسایی سیستم مورد نیاز است. هر یک از قوانین کنترل بر روی یک هدف FPGA با توانایی کافی برای دستیابی به نرخ بالای حلقه کنترل، اجرا شده است. نتایج کنترل تجربی نشان میدهد که قانون کنترل ناوابسته بر مدل قدرت کافی برای سرکوب حالت مطلوب را داراست. عملکرد کنترل مبتنی بر مدل قانون کنترل نسبت به روش قبلی چندان مثبت نیست و بنابراین برای این نرم افزار توصیه نمیشود.



1.     Fuller, C.C., Elliott, S. and Nelson, P.A., "Active control of vibration'', Academic Press,  (1996).

2.     Yuan, M., Ji, H., Qiu, J. and Ma, T., "Active control of sound transmission through a stiffened panel using a hybrid control strategy", Journal of Intelligent Material Systems and Structures, Vol. 23, No. 7, (2012), 791-803

3.     Khoshnood, A., "Vibration control of a flexible multi-body dynamic system using sub-band robust adaptive filtering", Journal of Vibration and Control, (2015).

4.     Khoshnood, A.M. and O. Kavianipour, "Vibration suppression of fuel sloshing using subband adaptive filtering", International Journal of Engineering Transactions A: Basics,  Vol. 28, No. 10, (2015), 1507-1514.

5.     Wang, Y. and D.J. Inman, "Comparison of control laws for vibration suppression based on energy consumption", Journal of Intelligent Material Systems and Structures,  Vol. 22, No. 8, (2011), 795-809.

6.     Ma, T.-B., Qiu, J.-H., Ji, H.-L. and Yuan, M., "Local strain compensation and improved ppf algorithm for vibration control", Journal of South China University of Technology,  Vol. 40, No. 5, (2012).

7.     Alfi, A. and Fateh, M.M., "Identification of nonlinear systems using modified particle swarm optimisation: A hydraulic suspension system", Vehicle System Dynamics,  Vol. 49, No. 6, (2011), 871-887.

8.     Moghadam, F.H. and Samadi, F., "Active suspension system control using adaptive neuro fuzzy (anfis) controller", International Journal of Engineering Transactions C: Aspects,Vol. 28, No. 3, (2014), 396-401.

9.     Kehtarnavaz, N. and Mahotra, S., "Digital signal processing laboratory: Labview-based FPGA implementation, Universal-Publishers,  (2010).

10.   Craig, R.R. and Kurdila, A.J., "Fundamentals of structural dynamics, John Wiley & Sons,  (2006).

11.   Balas, M.J., "Direct velocity feedback control of large space structures", Journal of Guidance, Control, and Dynamics,  Vol. 2, No. 3, (1979), 252-253.

12.   Franklin, G.F., Powell, J.D. and Workman, M.L., "Digital control of dynamic systems, Addison-wesley Menlo Park,  Vol. 3,  (1998).

13.   Alfi, A., Shokrzadeh, A. and Asadi, M., "Reliability analysis of h-infinity control for a container ship in way-point tracking", Applied Ocean Research,  Vol. 52, (2015), 309-316.

14.   Alfi, A., Khosravi, A. and Lari, A., "Swarm-based structure-specified controller design for bilateral transparent teleoperation systems via μ synthesis", IMA Journal of Mathematical Control and Information, (2013).

15.   Z. Zhixian, Changsheng, Z. and Lieping, Z., "H ∞  robust controller design and experimental analysis of active magnetic bearings with flexible rotor system", International Journal of Engineering  Transactions B:Applications,  Vol. 28, No. 8, (2015), 1233-1240.

16.   McFarlane, D. and Glover, K., "A loop-shaping design procedure using h∞ synthesis", Automatic Control, IEEE Transactions on,  Vol. 37, No. 6, (1992), 759-769. 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir